Задачи к лекции «Функции Грина»

Упражнения (30 баллов)

Упражнение 1. Уравнения движения (15 баллов)

- 1. Используя только уравнения движения для полевых операторов, покажите явно, что запаздывающий $D_R(x-y)=\theta(x^0-y^0)\left\langle [\hat{\phi}(x),\hat{\phi}(y)]\right\rangle$ и Фейнмановский $D_F(x-y)=\left\langle \hat{T}\{\hat{\phi}(x)\hat{\phi}(y)\}\right\rangle$ пропагаторы действительно являются функциями Грина уравнения Клейна-Гордона (то есть удовлетворяют уравнению Клейна-Гордона с правой частью $i\delta^{(4)}(x-y)$).
- 2. Сделайте то же самое для комплексной теории Клейна-Гордона. Покажите, что при этом определение нужно слегка модифицировать (иначе получится ноль):

$$D_R(x-y) = \theta(x^0 - y^0) \left\langle \left[\hat{\phi}(x), \hat{\phi}^{\dagger}(y) \right] \right\rangle, \quad D_F(x-y) = \left\langle \hat{T} \left\{ \hat{\phi}(x) \hat{\phi}^{\dagger}(y) \right\} \right\rangle$$
 (1)

(зануление на самом деле связано с наличием U(1)-симметрии в задаче — $\phi \mapsto \phi e^{i\alpha}$).

Упражнение 2. Координатное представление (15 баллов)

Выразите коррелятор $D(x-y) = \left\langle \hat{\phi}(x) \hat{\phi}(y) \right\rangle$ для пространственно-подобной разности x-y (так что $(x-y)^2 = -r^2$) через функцию Макдональда $K_n(z)$. Определите асимптотику при $r \gg m^{-1}$ и $r \ll m^{-1}$. Последняя не должна содержать m, и, очевидно, совпадает с точным пропагатором в безмассовой теории m=0.

Задачи (70 баллов)

Задача 1. Простой гармонический осциллятор (30 баллов)

Рассмотрите «0+1-мерную квантовую теорию поля» — квантовую механику простого гармонического осциллятора, который задаётся следующим действием:

$$S[\phi(t)] = \frac{1}{2} \int dt \left(\dot{\phi}^2(t) - \omega_0^2 \phi^2(t) \right) \tag{2}$$

- 1. Перейдите к квантомеханическому описанию, введя операторы координаты и импульса с коммутационным соотношением $[\hat{\phi}, \hat{\pi}] = i$. Постройте операторы рождения и уничтожения \hat{a} и \hat{a}^{\dagger} , диагонализуйте гамильтониан.
- 2. Решите уравнения Гейзенберга для лестничных операторов. Используя их, вычислите Фейнмановский и запаздывающий пропагаторы:

$$D_F(t_1 - t_2) = \left\langle \hat{\mathcal{T}} \{ \hat{\phi}(t_1) \hat{\phi}(t_2) \} \right\rangle, \quad D_R(t_1 - t_2) = \theta(t_1 - t_2) \left\langle [\hat{\phi}(t_1), \hat{\phi}(t_2)] \right\rangle. \tag{3}$$

Покажите, что они совпадают с функциями Грина классического уравнения ПГО. Вычислите их Фурье-образы $D_F(\omega)$ и $D_R(\omega)$.

Задача 2. Связь функций Грина (20 баллов)

Пусть \hat{H}_0 — произвольный одночастичный гамильтониан (например, $\hat{H}_0 = \frac{\hat{p}^2}{2m} + U(x)$). Рассмотрим соответствующую многочастичную задачу с полевым гамильтонианом:

$$\hat{H} = \int d\mathbf{x} \hat{\psi}^{\dagger}(\mathbf{x}) \hat{H}_0 \hat{\psi}(\mathbf{x}) \tag{4}$$

1. Пусть известен полный набор решений одночастичного уравнения Шрёдингера с гамильтонианом \hat{H}_0 — ортонормированные волновые функции $\psi_n(x)$ и соответствующие им энергии E_n . Выразите через них полевые операторы, а также запаздывающую функцию Грина:

$$G_R(\boldsymbol{x}_1, \boldsymbol{x}_2, t_1 - t_2) = \begin{cases} -i\theta(t_1 - t_2) \left\langle [\hat{\psi}(\boldsymbol{x}_1, t_1), \hat{\psi}^{\dagger}(\boldsymbol{x}_2, t_2)] \right\rangle, & \text{bosons} \\ -i\theta(t_1 - t_2) \left\langle \{\hat{\psi}(\boldsymbol{x}_1, t_1), \hat{\psi}^{\dagger}(\boldsymbol{x}_2, t_2)\} \right\rangle, & \text{fermions} \end{cases}$$
(5)

 $^{^1}$ Если восстановить размерные коэффициенты, то стоящий тут масштаб расстояний $-\hbar/mc$, комптоновская длина волны частицы.

2. С другой стороны, выразите через те же величины одночастичную функцию Γ рина — pезольвенту — определяемую следующим образом:

$$G_R(\boldsymbol{x}_1, \boldsymbol{x}_2, E) = \langle \boldsymbol{x}_1 | \frac{1}{E - \hat{H}_0 + i0} | \boldsymbol{x}_2 \rangle$$
(6)

3. Наконец, вычислите *пропагатор*, описывающий распространение частицы из точки x_2 в точку x_1 за время $t_1 - t_2$:

$$G_R(\mathbf{x}_1, \mathbf{x}_2, t_1 - t_2) = -i\theta(t_1 - t_2) \langle \mathbf{x}_1 | \hat{U}(t_1 - t_2) | \mathbf{x}_2 \rangle, \quad \hat{U}(t) = \exp(-i\hat{H}_0 t)$$
 (7)

- 4. Покажите, что выписанные выше три объекта (которые, вообще говоря, имеют разную структуру и возникают в разных задачах) эквивалентны друг другу.
- 5. Вычислите их в импульсном представлении для свободной частицы $U(x) \equiv 0$.

Задача 3. Разичные функции Грина (20 баллов)

Используя полученные знания, вычислите следующие Фейнмановские функции Грина (достаточно сделать это лишь в импульсном представлении!):

1. Функцию Грина свободного Ферми-газа:

$$G_F(\boldsymbol{x}_1 - \boldsymbol{x}_2, t_1 - t_2) = -i \langle \Omega | \hat{\mathcal{T}} \{ \hat{\psi}(\boldsymbol{x}_1, t_1) \hat{\psi}^{\dagger}(\boldsymbol{x}_2, t_2) \} | \Omega \rangle$$
(8)

 $(\text{где }|\Omega\rangle$ соответствует заполненной Ферми-сфере с импульсами $p < p_F)$. Покажите, что если $|\Omega\rangle = |0\rangle$ (фермионов нет), то она совпадает с запаздывающим пропагатором; покажите также, что в общем случае знак инфинитезимальной мнимой части i0 в знаменателе как раз определяется заполненностью состояния с соответствующим импульсом в основном состоянии.

2. Функцию Грина продольных фононов:

$$D_F(\boldsymbol{x}_1 - \boldsymbol{x}_2, t_1 - t_2) = \left\langle \hat{T} \{ \operatorname{div} \hat{\boldsymbol{u}}(\boldsymbol{x}_1, t_1) \cdot \operatorname{div} \hat{\boldsymbol{u}}(\boldsymbol{x}_2, t_2) \} \right\rangle$$
(9)