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1. INTRODUCTION

O describe a phenomenon correctly and con-
veniently, one wants to represent the states of
physical systems by parameters that are logically con-
sistent and also have a familiar, operational significance.
Difficulties in achieving this goal have come up, for
example, in the study of atomic phenomena involving
polarization, spin orientations, and angular correlations.
In these phenomena, and in many others, the experi-
mental procedure does not usually analyze all relevant
variables to the maximum extent consistent with
quantum mechanics. We refer to states of “less than
maximum information,” to indicate for example that we
know less about the spin orientation of the protons in a
drop of water than we would if each proton were in a
state characterized by a magnetic quantum number.

The difficulty in familiarizing oneself with states of
less-than-maximum information leads, for example, to
ask: “Given a beam of unpolarized electrons, should one
think of each electron as having a definite spin orienta-
tion?”” Questions of this kind are semantically slippery,
of course, and should be argued in terms of some specific
experimental arrangement. Even so, their clarification
requires some effort. This writer regards the picture of a
mixture of definite orientations as unrealistic because
the choice of alternate orientations is not unique. This is
shown, for example, by considering the analogous
problem of vy-ray polarization in the phenomenon of
two-photon positron annihilation. No polarization of
the  rays is observed with a single detector A4, sensitive
to polarization but which receives only one photon
from any pair: Now, operate 4 in coincidence with
another detector B sensitive to linear polarization and
actuated by the other photon of a pair; 4 will detect a
partial linear polarization. If, on the other hand, B is
sensitive to circular polarization, 4 detects a partial
circular pelarization. Having found that the polarization
observed at A depends qualitatively on observations
performed at B, one has little basis for classifying the
“polarization of individual photons” detected by 4, as
either linear or circular.

The difficulties met in these discussions derive in part
from the circumstance that quantum mechanics has
been mostly concerned with the “pure” states of sys-
tems, such as states of definite spin orientation, which
are represented by state vectors y. States with less than
maximum information, represented by density matrices
p, have been considered primarily in statistical me-
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chanics and their discussion has been influenced by the
historical background in this field. Moreover, most
atomic physicists have not had much opportunity to
become familiar with the representation of states by
density matrices.!

Calculations can be, and usually have been, performed
without reference to density matrices even when maxi-
mum information is not available. This is done by
calculating as though a maximum of variables were
observed and then summing (or averaging) over the
eigenstates of the unobserved variables. On the other
hand, when the states are represented by density
matrices one can often expedite the calculations and
avoid the introduction of unnecessary variables, which
is of particular value for the treatment of many-body
problems.

The variables to be dispensed with include the arbi-
trary phase of the state vector ¥ which represents the
state of the whole system.

It is also important that the density matrix of a
system can be easily expressed in terms of the mean
values of observables. Identifying a state by means of
such physical parameters brings out the operational
basis of the theory and helps in forming a mental
picture.

In the course of a phenomenon, the variations of
density matrices, or of equivalent sets of parameters,
can be represented and analyzed to a considerable ex-
tent by operator techniques without reference to special
representations of the operators. The whole treatment
of quantum-mechanical problems in terms of density
matrices can thereby reflect the features of physical
phenomena more directly and in closer correspondence
to macroscopic methods than is otherwise possible.

This review proposes to familiarize the reader with
the methods and the potentialities of quantum-me-
chanical treatments in terms of density matrices, uti-
lizing a variety of examples. It starts by stating briefly
the basic facts regarding the identification of states for
atomic systems and regarding the properties of density
matrices as developed by von Neumann (N27).* The
treatment is then developed toward the systematic
application of operator techniques. Most, if not all, of
the factual material is well known, but the point of view
departs in some respects from that of standard references
(T38, NSS).

The analysis of an experimental situation in Sec. 5 is
designed to illustrate why partially polarized light
should be described not as a mixture of different
polarizations, but by parameters that define its ob-
servable properties without reference to fictitious
models.

This review does not cover the field of quantum

1 The name “‘statistical matrix” is often used instead of “density
matrix.” The name density matrix itself relates to the corre-
spondence between p and the distribution function p(gs,p:) in the
phase space of classical statistical mechanics. This correspondence
has been developed by Wigner (W32), see Sec. 9.

* References are listed at the end of this article.
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statistical mechanics, but it may clarify initial concepts
and approaches to this field.

2. IDENTIFICATION OF STATES
(a) Pure States

Quantum mechanics deals usually with phenomena in
which a maximum of information is available about the
system under consideration. This maximal information
is attained, for example, for a spinless particle whose
state at a certain time is represented by a wave function
¥(x,9,2), for a nonrelativistic spinning electron in a
central field with a specified full set of quantum numbers
(n,l,5,m), or for a light beam of intensity I, frequency »,
direction w, and linear polarization 4. States of maximal
information are often called “pure states” or simply
“states.”

A pure state is characterized by the existence of an
experiment that gives a result predictable with certainty
when performed on a system in that state and in that
state only. For example, linear polarization of a light
beam in a given plane is characterized by 1009, trans-
mission of each photon through a suitably oriented Nicol
prism; no other state of polarization is fully transmitted
by the same prism. Filtration through a Nicol prism
defines a state of polarization completely because beams
thus filtered behave identically with respect to any other
polarization analyzer. ’

An experiment that yields a unique predetermined
result for a system in a given pure state can be designed
to act as a filter which leaves the system undisturbed,
like a Nicol prism traversed by light of the pertinent
linear polarization. The experiment may then be re-
peated again and again on the same system, at least in
principle, always with certainty as to its outcome. Pure
states can, in fact, be “prepared” by subjecting systems
to a filter-type experiment. The example of light
polarization often proves particularly helpful to under-
stand the relationships between quantum mechanical
states and the experiments that characterize them; the
relationships may be less obvious in other examples but
are essentially the same.

An experiment that characterizes uniquely a pure
state, as indicated above, and thus provides a maximum
of information about it is called a “complete” experi-
ment. The term “complete” may have a relative mean-
ing, with reference to only a part of the variables of a
system. For example, filtration through a Nicol prism is
a complete experiment with regard to polarization, but
has little relevance to the photon energy.

A pure state can then be identified by specifying the
complete experiment that characterizes it uniquely.
Mathematically one can construct a variety of Hermitian
operators which have the given pure state as an
eigenstate. An Hermitian operator which transforms the
states of a physical system represents an observable.?

2 This statement is believed valid for most applications in
quantum mechanics but is subject to restrictions discussed in

(WWW52).
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Given such an operator, it proves possible to design, at
least in principle, an experiment that constitutes a
measurement of the corresponding observable. For ex-
ample the state (n,,7,m) of an electron bound in a
central field is an eigenstate of the energy operator H
corresponding to the eigenvalue E,;; and also an
eigenstate of the angular momentum operator J, corre-
sponding to the eigenvalue m#. Experiments that
measure energies and angular momenta are familiar;
experiments to measure less familiar observables can
nevertheless be designed.

When it is not convenient to identify a pure state by
specifying the relevant complete experiment or its
corresponding operator, the state may be identified as a
linear superposition of eigenstates of any suitable com-
plete set of operators. For example the wave function
¥(x,y,2) of a particle describes its state as a superposition
of all simultaneous eigenstates of the three position
operators x, y and 2, the amplitude of the eigenstate
(%,y,2) being ¥(x,v,2). The representation of a pure
state, either as an eigenstate of a particular operator or
as a superposition of eigenstates of another arbitrary
operator, is usually called a “state vector” y. (It is also
often called a wave function even when ¢ is not ex-
pressed in terms of space coordinates.)

(b) General

Quantum-mechanical systems also occur for which no
complete experiment gives a unique result predictable
with certainty. For example, no polarization analyzer
admits or rejects with certainty photons of partially
polarized light. We say, loosely, that the information on
such a system is less than a maximum, with reference to
the lack of a complete experiment with a uniquely
predetermined outcome. The state of the system is
nevertheless fully identified by any data adequate to
predict the (statistical) results of all conceivable ob-
servations on the system. Whether or not the predicted
dispersion of these statistical results attains its theo-
retical minimum is irrelevant to the concept of state.
Indeed “state’” means whatever information is required
about a specific system, in addition to physical laws, in
order to predict its behavior in future experiments.

States that are not “pure” have been called “mixed”
states because they can be described by the incoherent
superposition of pure states. Incoherent superposition
means, by definition, that to calculate the probability
of finding a certain experimental result with a system in
the mixed state one must first calculate the probability
for each of the pure states and then take an average,
attributing to each of the pure states an assigned
“weight.”

The concept of a nonpure state as a mixture of pure
states originates from the early investigations of the
connections between quantum mechanics and statistical
mechanics. Classical statistical mechanics deals, ideally,
with statistical mixtures (ensembles) of classic mechani-
cal states, each of which is characterized by sharply
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defined values of all variables. The pure states of
quantum mechanics were then visualized as analogues
of the classic mechanical states and quantum-statistical
mechanics was regarded as dealing with mixture of pure
states.

However, the description of a nonpure state as the
incoherent superposition of pure states is not unique.
There is in general no reason, for example, why un-
polarized light should be described as a mixture of two
linear polarizations rather than of two circular ones.

We shall regard the state of a system, whether pure or
not, as defined by its previous history, i.e., by the
method of its preparation. Information on the prepara-
tion may be replaced by adequate experimentation on
an ensemble of identically prepared systems. Frag-
mentary information, inadequate to make statistical
predictions about future experiments, is often comple-
mented by plausible assumptions. Examples given in
Sec. 4 show how the information is represented by a
density matrix. It will also be shown that lack of
information about a variable can often be expressed as a
statement that certain operators have expectation value
zero. For example if the spin orientation of a particle is
wholly unknown, the expectation value of each com-
ponent of its angular momentum vanishes.

The point of view taken here differs to some extent
from that which is often followed in standard treat-
ments of statistical quantum mechanics, but the differ-
ence may be regarded as a matter of preference rather
than of substance. To illustrate this difference, it may be
recalled how Tolman (T38) analyzes the fluctuations in
the experimental results obtained from a system in a
given state. He considers first a subset of fluctuations
that should be expected if the system were in any one of
a number of pure states. Then he combines these
subsets into a broader set according to the probability
distribution that the system be in any of these pure
states. In this paper we consider only the broader set of
all fluctuations among the experimental results obtained
with an ensemble of systems prepared according to
identical specifications. We do not analyze these fluctua-
tions into subsets when this analysis is not unique and
does not correspond to observable characteristics of the
situation. We regard as somewhat incidental whether a
change in the preparation of the systems would reduce
the fluctuations to a lower level or whether they already
attain the minimum level set by quantum-mechanical
laws. That is, we deal with a single statistical ensemble of
quantum mechanical systems prepared by identical pro-
cedures, not with a statistical ensemble of quantum
mechanical ensembles.? The terms “mean’ or “average”

8 The point of view of Elsasser (E37) is in some respects close to
that adopted in this paper, but differs rather substantially in other
respects, because it rests on the notion that ‘“there exists no
general a priors principle of how to collect samples which can be
represented by the same statistical matrix” and that accordingly
‘“the problem of determining the statistical matrix is essentially an
indefinite one.” Here we take a more positive attitude toward the
determination of the statistical matrix.
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will be always understood, in this review, to relate to the
statistical expectation regarding such an ensemble.

3. DENSITY MATRIX
(a) Formulas for Mean Values

In the ordinary formalism of quantum mechanics, a
pure state is identified by the coefficients ¢, of the
expansion of its state vector ¢ into eigenvectors #, of
some complete set of operators,

‘p:‘Zn Cnlhn. (31)

For a system in this state, an operator Q represented by
a matrix Q, -, has the mean value

<Q>= Zn’n Qn’ncn’*cn- (32)

When a nonpure state is represented by the incoherent
superposition of a number of pure states ¥(? with
statistical weights $¢?, to each pure state corresponds a
mean value (Q);, and the mean value of Q for the
incoherent superposition is given by the grand average

@)= pNQ)i=L n Qurn 224 pPcP ¥, (3.3)
One defines then the density matrix as
Prnt = Zi p(z’)c(i)n,*c(z‘)n (3.4)
so that (3.3) becomes
(O)=2wn Onrnpnn =20 (Q0) nn=Tr(Qp), (3.5)

where Trd indicates the trace (i.e.,, the sum of the
diagonal elements) of a matrix 4.

(b) Definition

We regard the density matrix as defined by Eq. (3.5)
rather than by (3.4). It represents a minimum set of
input data which serves to calculate the mean value of
any operator Q for a system prepared according to given
specifications.* The information from which this set of
data is derived is equivalent to a knowledge of the mean
values of as many independent operators Q™ as there
are independent parameters in the matrix p,... In fact
the initial information on the state of the system is often
conveniently expressed as a set of () from which the
pan are determined by solving a system of Eq. (3.5), one
for each (Q). Equation (3.5) which gives (Q) for a
generic Q in terms of the matrix p may be looked upon as
a device to calculate a generic (Q) from advance
knowledge of a special set of (Q")’s.

(¢) Limitations

Limitations on the matrix elements p,, - include the
following:

¢ Any prediction about the behavior of a system can be ex-
pressed as the mean value of a suitable operator Q. For example,
the probability of a certain event is the mean value of an operator
whose eigenvalues are 1 when the event occurs and 0 when it does
not.

(1) The condition that {Q) is real for every Hermitian
operator Q, requires p to be Hermitian too,

Pn’nzp'rm'*- (3.6)

(2) The condition that the unit operator I has the
mean value 1, requires

Tr(Ip)=Tr(p)=2n pan=1. (3.7)

(3) The condition that every operator with non-
negative eigenvalues (for example the operator 8;n0%.
with eigenvalues 1 and 0) has a non-negativemeanvalue,
requires p to be positive definite. That is, every diagonal
element of p in any matrix representation must be non-
negative,

(3.8

The mean value of the operator 8z.dxns, namely ps,
represents the probability of finding the system by a
suitable experiment in the pure state #;. Accordingly,
Trp=2_x prs represents the total probability of finding
the system in any one of a complete set of orthogonal
states and the condition (3.7) constitutes an obvious
requirement.

(4) The Hermitian matrix p may be reduced to the
diagonal form

38557 =2nn' Tinprn T nrjr (3.9)

by a unitary transformation 7. The conditions (3.7) and
(3.8) require that

2ipP< (X509 =[Tr(p) I=1. (3.10)

The 3 ;p? is the Tr(p®), and therefore we have in
general

pri2 0,

Tr(p2)=Znn'IPnn'|2S1, (311)

which limits the value of every single element of the
density matrix.

(d) The Variations in Time

The variations in time of the density matrix are
governed by the Schroedinger equation. Any unitary
transformation .S that changes the vector ¢ representing
a pure state into Sy, also changes the matrix p repre-
senting a generic state into SpS~. The ordinary
Schroedinger equation 8y/di=—i%A'Hy has, as a for-
mal solution, the time variable transformation (f)
=exp(— % 1Hi)Y(0). The corresponding formulas for
the density matrix are

dp/dt=—ih\[Hp—pH ], (3.12)
p(t)=exp(—i%n'Ht)p(0) exp % 1HE). (3.13)

The mean values of observables vary in time ac-
cording to

(Q)¢=Tr[Qp (1) 1="T1[Q exp(—i#*H1)p(0) exp (i Ht)]
=Tr[exp (7 H?)Q exp(—#1Ht)p(0)]

=Tr[Q®p(0)]. (3.14)
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The transition from the Schroedinger representation
(O=const, p=p(#)) to the Heisenberg representation
(Q=0(), p=const) appears hereasa trivial consequence
of the identity Tr(4B)="Tr(BA).

In the scheme where the Hamiltonian H is diagonal,
with eigenstates v,, (3.13) takes the form

pmms ()= pmm (0) expLi#r ™ (Epps— Em)t].

Notice that only energy differences and the corre-
sponding frequencies #'(E,,— E,) appear here, to the
exclusion of absolute energies which are indeed not
observable.

(3.15)

(e) The Diagonal Representation

The diagonal representation (3.9) of the density
matrix is equivalent to

Pnn’=2j PJ‘Tin’*TJ'n-

Comparison of (3.16) with (3.4) shows that a generic
state can be represented by the incoherent superposition
of orthogonal pure states y; with statistical weights pj,
the state vectors y; being identified by their components
which are the elements of the transformation matrix
T j». This representation is not unigue in general. That is,
an infinity of different representations (3.4) can be
constructed for a given density matrix unless: (a) one
stipulates that the states ¥? represented by the ¢,(?’s
are mutually orthogonal, like the ¢,’s, and (b) no two
nonzero eigenvalues p; are equal. Examples of the
relevance of these conditions will be given in the
following sections.

(3.16)

(f) A Pure State

A pure state is represented by a density matrix with
one eigenvalue equal to 1 and all others equal to 0. (The
eigenvalues of the matrix are invariant under unitary
transformations). Equation (3.16) reduces then to pan
=T1,*T1,. A density matrix p,. can be factorized in
this manner when, and only when, all minors of its
determinant vanish.

(g) The Number of Independent Parameters

The number of independent parameters that identify
a density matrix depends on its number N of rows and
columns. This is the number of orthogonal pure states
over which the Y, extends in (3.1) and in the subse-
quent formulas. This number may be infinite but is
often finite when one considers only a particular prop-
erty of a system, such as the spin orientation of a
nucleus.

A matrix with N rows and columns has N? elements.
The condition (3.6), that p be Hermitian, restricts the
number of independent real parameters in the N?
complex elements to N2, and (3.7) restricts it further to
N2—1. These parameters are further limited in their
range of variation by inequalities like (3.8) and (3.11),

but are nevertheless independent. Therefore ¢ takes, in
general, N?—1 separale measurements, or equivalent
data, to identify the stale of a system which possesses V
independent pure states. For example, a nucleus of Na*®
with spin § has 4 independent pure states of spin
orientation and the description of a specific state of
orientation requires in general 15 independent data.®

Note, for comparison, that a pure state is identified by
the N complex coefficients ¢, of (3.1). The number of
meaningful independent real parameters in the ¢,’s is
reduced from 2N to 2N —1 by the normalization condi-
tion ¥, ¢,2=1, and further to 2V — 2 because the phase
of the state vector ¢ is arbitrary and physically
meaningless.

(h) Interacting Systems

The joint state of two interacting systems @ and b is
represented by a density matrix p(*® of which each row
or column is labelled by two indices (m,7) corresponding
to eigenstates #,, and v, of the separate systems.® An
operator Q@ of the system ¢ may be treated as an
operator of the whole system when multiplied by the
unit operator of b, 1¥=4§,,. The mean value of Q¢? is
then

<Q(a)> =Tr (Q(a)l( b)p(a b))
= me’ Qm’m(a)[z nn' an’npmn, m’n'(ab)]

=Tra(Qp'®), (3.17)

where
Pmm’(a) = Zn Pmn, m’n(ab) = [Trb(p(ab))]mm' (3 18)

represents the information on ¢ alone contained in p@¥.
The states of the two systems are uncorrelated when

<Q(a)Q(b)>=<Q(a)><Q(b)> (319)

for all pairs Q@Q® which requires the joint density
matrix to be a product,

(ab=p (@) (D), (3.20)

Pmn, m’'n’
4. EXAMPLES
(a) Orientation of Spin-1/2 Particles

This spin orientation is represented by a -density
matrix with two rows and columns, corresponding to

8 The clause “in general” refers to the possibility that a few
initial measurements turn out to be compatible only with certain
special values of the remaining parameters. In this event further
measurements of these parameters would be unnecessary. For ex-
ample, if a first experiment on an assembly of Na2 nuclei utilizes a
Stern-Gerlach inhomogeneous magnet and if every nucleus is
found to follow the path corresponding to the magnetic quantum
number m =%, the state is already fully identified.

6 The two systems may consist of two portions of matter, of two
different groups of particles (like nuclei and electrons of the same
portion of matter) or of different characteristics (like spin and
orbital motion) of the same particle. One can regard a system as an
aggregate of two separate systems whenever there exists a com-
plete set of operators O, pertaining to the whole system, that is the
sum of two sets of operators (@ and O®, such that O® does not
operate on the eigenstates %, of 0@, and O(® does not operate on
the v,’s of O®,
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two pure states of opposite spin orientation (e.g., up and
down). In a generic state the degree and direction of
spin orientation are indicated by the magnitude and
direction of the vector

P=(0)="Tr(p0)

whose components are the mean values of the operators
represented by the three Pauli matrices a4, gy, and .. A
pure state with definite spin orientation has P=1, a
state of random orientation has P=0. For particles with
magnetic moment u in a magnetic field H, under condi-
tions of paramagnetic polarization, we have P=uH/1kT.

Knowledge of P is sufficient to identify the density
matrix, considering: (1) that any 2X2 Hermitian
matrix can be represented as a linear combination of
G 0y, 0z and of the unit matrix X, (2) that the Pauli
matrices have the properties Tro;=0, Tr(o,0k) =20,
(3) that Trp=1 and TrX=2 require the coefficient of X
to be 3. We have, then, (T'G49)

P=%(1+P101+Pyau+on'z)=%(Z+P'U)

1+P, P,—iP,
=1 . (42)
P,+iP, 1-P,

(4.1)

The representation (4.2) leads to a simple treatment
of the Larmor precession of spin orientation in a mag-
netic field. The magnetic moment u is represented
quantum-mechanically by the operator v(3)%e, where
v is the gyromagnetic ratio, so that the Hamiltonian in
a magnetic field H is —y($)%o-H. The Schroedinger
equation (3.12) is then

dp/3t=%0P/dt-0=1ty[H-e P-o—P-c H-0 ]

=—1yHXP-0, (4.3)

and thus reduces to the classical equation
aP/9t=—~yHXP. (4.4)

The extension of this equation to spin values 7>1% is
indicated below, the extension to include the paramag-
netic relaxation is given.in Sec. 11g.

The response of a particle detector, whose efficiency
depends on spin orientation, and which therefore serves
as a polarization analyzer, may be represented by an
operator in a form analogous to (4.2). Maximum and
minimum efficiency, ex and €., correspond necessarily,
for spin %, to particles with opposite spin orientations
indicated by unit vectors Q and —Q. The detector is
then represented by an operator D with the spin
orientation eigenstates Q and —Q and the eigenvalues
ey and e,,. When the z axis is parallel to Q, the matrix of
this operator is

ex O

0 em

) (4.5)

and for a generic orientation of axes it is

D=4 (eu+em)¥+ (enr—e€n)Q-0]. (4.6)
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The probability of response of this detector to particles
with the density matrix (4.2) is the mean value

(D)=Tr(pD) =3[ (em+em)+ (exx—en)P- Q1 (4.7)

(b) Orientation of Spin-j Particles

The density matrix of spin orientation has 2j41
rows and columns. For 7> the representation (4.2) can
be generalized to include, besides the unit matrix and
terms depending on dipole polarization, additional terms
which depend on multipole polarization (see end of
Sec. 6). This expansion of p constitutes a “reduction” in
the sense of tensor algebra (FRS57, Sec. 19) and the
coefficients of the operators may be called the “reduced
elements” of p.” The application of the expansion to
collision and disintegration processes will be outlined in
Sec. 11 a.

The definition (4.1) of the spin orientation vector is
replaced for a generic j by

P=(3)/jh, (4.8)
where J indicates the angular momentum operator.
With this definition, the changes of spin orientation
induced by a magnetic field H are described by (4.4) for
all values of j.®° The multipole parameters of spin
orientation remain constant, under the influence of H,
provided they are expressed in a coordinate system
which precesses with P.

(c) Polarization of Electromagnetic Radiation

Light polarization is represented by a density matrix
with two rows and columns, corresponding to two
opposite polarizations, e.g. to linear polarizations indi-
cated by orthogonal unit vectors A; and A,. Because of
mathematical analogy to the density matrix for the
orientation of spin-} particles, the density matrix of
light polarization can be represented in the form (4.2),
but the indices #, ¥, and 2z no longer correspond to direc-
tions of the physical space. They relate to a mathe-
matical representation of polarizations in a 3-dimen-

7 These coefficients have also been called “statistical tensors”
(F51a) and “state multipoles” (F53).

8 This result is derived from the Schroedinger Eq. (3.12), taking
into account that: (1) the magnetic moment u is represented by
the operator vJ, (2) therefore, the Hamiltonian is —vJ-H, (3) the
definition (4.8) requires the dipole term in the expansion of p to
have the form 3P-J[j(j+41)(27+1)A]", (4) the commutator
[J-H,P-J] equals s2ZHXP-J.

® The history of (4.4) has some interest. The treatment of spin
precession by ordinary quantum-mechanical methods is very
complicated (BR435). Bloch pointed out, in his paper on nuclear
induction (B46), that (4.4) can be established without solving the
Schroedinger equation, because the quantum-mechanical mean
value of any quantity follows in its time dependence exactly the
classical equations of motion. Later Wangsness and Bloch (WB53)
derived (4.4) from the Schroedinger equation by a density matrix
procedure equivalent to that indicated here. The link between the
classical and the Schroedinger equation emerges clearly when p is
expressed in terms of mean values, as in (4.2), so that the
Schroedinger equation for p reduces to an equation of motion for
mean values. A general formulation of this reduction will be given
in Sec. 6.
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sional space, called “Poincaré representation,” in which
the z axis corresponds to linear polarization along A,
negative 2 to polarization along A,, positive x to linear
polarization at 45° between A; and A, and positive y to
circular polarization rotating from A; toward A, A
unitary transformation of the base polarizations A; and
A, is represented by a rotation of Cartesian axes in the
representative space.

This representation of the density matrix has proved
convenient (F49, F54a), in the same manner as the
corresponding representation for spinning particles. The
form (4.2) of the density matrix is normalized to provide
the input for the calculation of elementary processes
involving one photon at a time. For macroscopic
processes, one multiplies (4.2) simply by the intensity I
of a radiation beam. The quantities I, IP,, IP,, IP,
constitute a set of Stokes parameters which charac-
terizes simultaneously the intensity and polarization
state of the beam (S52, F49, FMcD51).

(d) Joint Polarization of Photon Pairs

In the positron annihilation by two-photon process,
which was mentioned in Sec. 1, the emitted vy rays
display a polarization only when the two photons of a
pair are analyzed simultaneously but not when the
photons are observed singly. The experimental results
can be described in terms of the mean value (D DB),
where the operators D represent polarization analyzers
serving to detect two photons 4 and B in coincidence.
The matrix of D™ or D® is given by (4.6), where Q
indicates now a vector of the Poincaré representation of
polarizations. The usual statement that “the photons of
a pair have opposite polarizations” means actually that,
for perfect analyzers with e,=0, one would find
(DDDBY=(1/4) e Ve® (1— Q™. Q®), which van-
ishes for QW=Q® and equals (3)exPey® for
opposite analyzer settings QW= —Q®  whether Q@
corresponds to linear, circular, or elliptical polarization.
In a realistic application with imperfect analyzers one
finds

(DDODB) =1 (emr+ em) D (€21t €m) P
— (exr— €)@ (exr—€,) PQUW- QB ], (4.9)

The joint state of polarization of the photon pairs is
represented by a density matrix p(4® with 4 rows and
columns, which can always be expressed as a linear
combination of the 16 matrices 1WYB® [Ag B
o0, Wg, B, The requirement that Tr(pl4B DA DB)
be given by (4.9) for all choices of e and Q implies that

pUB) =L (1 (D] (B) _ (d). (B, (4.10)

This matrix represents the situation in very condensed
form, without reference to any specific type of polariza-
tion. The negative sign corresponds to the statement
that the “photons have opposite polarization.” The
density matrix for a single photon is, according to

(3.18), pW="Trpp 4B = (1)1 and indicates natural
polarization as expected.

The joint density matrix (4.10) can be derived, of
course, by a theoretical calculation of the annihilation
process.

(e) Steady States (Constant in Time)

When the state of a system does not vary in the
course of time, the density matrix is constant. According
to (3.15) we have then, in the scheme of energy
eigenstates,

prm =0 for s Ep. (4.11)

Any operator Q of the system may be split into two
parts, Q=0Q4Q®, one constant and one variable, by
defining

Q@ =Qmm0Emm, Q'@ = Qs (1— 0Bt (4.12)

A steady state may then be characterized by the
property
(Q®)=0 for all Q. (4.13)

In the Heisenberg representation formalism, Q® may be
defined by Q@ ()=0Q(#) —0Q(0).

(f) States with Space Invariances

Space invariance may be treated like time invariance.
For example if the state of a system is invariant under
translations along the x axis, its density matrix has a
property analogous to (4.11) in the scheme of mo-
mentum eigenstates, namely

prpz'=0 for P::;#Pz'. (414)

States invariant under space rotation, i.e., states of
random orientation and spherical symmetry, are very
important. Here the relevant scheme is that of eigen-
states of the squared angular momentum J? and of one
of its components, e.g., J,. Spherical symmetry is
represented by

(4.15)

where 7 and m relate, as usual, to the eigenvalues of J?
and J,; a is an additional quantum number relating to
the eigenvalues of any additional operators that com-
mute with J?, J, and among themselves.

In the more restricted case of axial symmetry only,
we have

Pajmarim=0 for j#j or m#=m,

(4.16)

A nucleus that had initially random spin orientation and
has absorbed, or interacted with, a beam of unpolarized
radiation has axial symmetry about the direction of the
beam.’® Any operator Q can be split, as in (4.12), into a

Pajm,a’j’m’=0 fOr m;ém/.

10 This property is fundamental for the theory of angular correla-
tions. It was first stated tentatively, in a different form, by
Falkoff and Uhlenbeck (FUS0) and then proved by various
authors (150, S50, L51, TGS51), through arguments equivalent to
the elementary considerations which lead to (4.16).
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part O having a symmetry property of interest, e.g.
invariance under space rotation, and a residual part
Qmon-®)  which is not invariant. The mean value
(Qon-9) vanishes for symmetric states.

(g) States of Thermal Equilibrium

Statistical mechanics shows that the state of a system
at a temperature T is represented by the incoherent
superposition of eigenstates of energy E, with weights
proportional to the Boltzmann distribution factor
exp(—E,/kT). In order that the sum of the weights for
all eigenstates equal 1, the weight of each state must
equal the factor exp(— E,,/kT) divided by the “sum of
states” Z(T)=>_.,. exp(— E./kT). That is, the density
matrix is diagonal in the scheme of energy eigenstates
and is given by

e—E’mlkT
Pmm? =B mm, (4.17)
Z(T)
in this scheme and by
e—H/kT e—H/lcT

= = 4.18
P Z(T) Tr(e H/*T) (4.18)

in operator notation.

Because p is a function of the Hamiltonian operator
only, and this function can be expanded in series, the
mean value of any operator Q can be expressed in terms
of the traces Tr(QH"). In particular we have

@)=0 (4.19)

for the whole class of operators Q¢» such that Tr(Q(®H")
=0 for all », i.e. such that Tr[Q®f(H)]=0 for all
functions of H. The derivation of (4.18) can be inverted
to show that, whenever (4.19) holds, p is a function of H
only.

The functional dependence of p on H can be identified
by the mean values (H), (H?---(H")---, which are
given by well known formulas of statistical me-
chanics in terms of the derivatives of Z(7T), e.g., (H)
=—dInZ/d(1/kT), (H»=(H)*+[d/d(1/kT) ] InZ, etc.

The derivation of (4.18) through statistical mechanics
is, then, equivalent to showing that, for a system in
contact with a thermal reservoir, the mean values of all
operators Q¥ tend to zero in the course of time and the
(H™) approach the values predicted by thermodynamics.
These results should follow from the Wangsness-Bloch
equation discussed in Sec. 11g.

5. ANALYSIS OF LIGHT EMITTED BY ATOMS

As a further illustration we discuss here the polariza-
tion of light emitted by atoms under controlled condi-
tions in an ideal experimental arrangement (F49)
(Fig. 1). The emission takes place in a chamber C on
which an optical detector and polarization analyzer are
collimated from a variable direction. The atoms enter

OPTICAL DETECTOR
POLARIZATION ANALY{E‘R 7

STERN GERLACH

STERN GERLAG]
BEAM SPLITTER<9

BEAM SPLITTER

o 20 )
ATOMS A 8l/ |/
. ;
Sos .
1)
Ju s— L W I S -

BEAM
SELECTOR

RADIATION
CHAMBER

ATOM DETECTOR
WITH BEAM SELECTOR

Fic. 1. Block diagram of an ideal experiment.

the chamber as a molecular beam, preanalyzed by a
Stern-Gerlach device 4 to select atoms with a specified
magnetic quantum number m, referred to an axis z
parallel to the magnetic field in 4. To be specific, we
consider an optical transition from a p state (I=1) toad
state (/=2) and assume that the Stern-Gerlach ana-
lyzer A has removed all atoms with m>£0. In the ordi-
nary language of quantum mechanics we say, then, that
the transition will lead from (I=1, m=0) to (I'=2,
m'=0, =1).

The angular distribution of intensity and polarization
of the light emitted by these atoms can be calculated,
for example, by considering the light as the incoherent
superposition of three components emitted respectively
in transitions to m'=1, 0 and —1. Alternately, one can
derive by a density matrix treatment a general formula
(FRS7, 19.6) for the intensity and polarization distribu-
tion of radiation emitted in transitions to a state whose
orientation is not observed.

The result can be expressed as a density matrix for
the polarization, in the form (4.2), multiplied by an
intensity distribution. Both the density matrix and the
intensity distribution are functions only of the angle 6
between the direction of emission and the z axis, since
the state of atoms filtered by 4 has cylindrical sym-
metry about this axis if the atom velocity is disregarded.
The result is

sin%
I®)pe< (1+% sinzﬁ)[}H— ‘ 0';],
6-sin

(5.1)

where the subscript ¢ indicates the direction in the
representative Poincaré space corresponding to linear
polarization in a plane containing the z axis. In explicit
matrix notation with the first row and column referring
to this polarization and the second to linear polarization
orthogonal to z, we have

14+ (4/3) sin?% 0

I0)p<
0 1

. (5.2)

Because the matrix is diagonal in this scheme, the
light can be regarded as the incoherent superposition of
two beams, one polarized linearly in a vertical plane,
with intensity o 14 (4/3) sin% and one polarized in a
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horizontal direction with intensity o 1. The excess polar-
ization in the vertical plane relates to the fact that the
transition to m'=0, associated with an oscillating cur-
rent parallel to z, is more likely than the transition to
either m'==-1 by a factor 4/3. However this analysis of
the polarization provides little justification for regarding
the light as “a mixture of photons” with the two linear
polarizations. That the density matrix is diagonal in the
scheme (5.2) follows from the symmetry of the initial
state m=0 under rotations about z and under reflection
on the xy plane.

If the device 4 selects atoms in the initial state m=1,
instead of m=0, the symmetry under reflection on the
xy plane drops out and the density matrix of the
polarization is more complicated. We have here

1 10 cosf o, sin%f o
I@)px= (1——sin26)[;H ]
14 14 —sin%0

1 (100 cos?0-+-sin‘g)?
= (1 —— sin%)[l +
14 14—sin’d

X (cosa oy—sina 0';)], (5.3)

where the subscript 5 refers to circular polarization and
the angle a=arctg(sin?/10 cosf) indicates the type of
partial polarization, which varies from left circular to
elliptical to linear and again to elliptical and right
circular as @ varies from 0° to 180°.

Consider now another Stern-Gerlach device B added
at the exit of the radiation chamber C, which can select
atoms having a specified quantum number 7’ after the
light emission process. These atoms are to be detected at
the exit of B and the detector output can be used to
“gate” the light analyzer device. The light will then
appear to be completely polarized. If the magnetic
fields in B and A are parallel and 4 selects #=0, atoms
will pass through B in coincidence with radiation emis-
sion for m’=1, 0 or —1. For m’=0 the polarization is
linear, in a vertical plane; for m'==1 it is circular,
elliptic or linear depending on the direction of observa-
tion. The intensity and polarization distribution for
each m’ is given by

I(0)px%sin®9({+a¢), for m'=0
sin®fo 2 cos@a,,)
1-cos? ’

for m'==1.

I(0)p =1 (14 cos) (1— (5.4)

The sum of the three intensity and polarization distribu-
tions yields (5.1).

The elementary treatment leads one to visualize the
partially polarized light represented by (5.1) as a
mixture of three kinds of photons polarized, respectively,
according to (5.4), simply because it appears natural to

classify the final state according to the same axis of
quantization as the initial state. (Notice that we have
here three incoherent components, whereas the diagonal
matrix (5.2) suggests only two.) However, this repre-
sentation does not rest on any intrinsic property of the
emitted light. Indeed, if the analyzer B is tilted about the
axis of the atomic beam, so that the final quantum
number #’ relates to an axis oblique to 2, the beam of
atoms after radiation will be resolved into five com-
ponents, with m'=0, 41, #2. Each of these compo-
nents is associated with a light emission fully polarized,
so that the light is in fact resolved into five incoherent
polarized components, when the analyzer is gated by the
output of B. Each of the five components is represented
by a matrix 7(6)p and the sum of these matrices
equals (5.1).

In summary, light is completely polarized only when
maximum information regarding the state of orientation
of the atoms which have emitted it (or have interacted
with it) is provided, and actually taken into account.
The information is required regarding the orientation
both before and after the process. Incomplete informa-
tion leads to partial polarization. Different representa-
tions of partial polarization as the incoherent superposi-
tion of polarized components correspond to different
conceivable methods of completing the information on
the atoms. None of these alternate representations
appears intrinsically relevant—apart from analytical
convenience—unless the complete information on the
atom is actually collected and correlated with the
polarization analysis.

An experimental analysis, equivalent to that indicated
here for light polarization, can be developed for the
orientation of particle spins or for any other quantum-
mechanical variable.

We have dealt here specifically with the information
or lack of information on the orientation of the atoms
after light emission, that is, with a follow-up analysis.
One could as well have considered alternate types of pre-
analysis. For example one could arrange the selective
device 4 so that it first splits up the atom beam
components with different # and then refocuses them
together on the entrance of the radiation chamber. It is
then possible to select one or the other m value at will by
stopping the other beam components with a diaphragm,
or else to allow two or more beam components to radiate
together.

6. EXPANSION IN ORTHOGONAL OPERATORS

The density matrix of the orientation of spin-(3)
particles is decomposed by (4.2) into a sum of standard
matrices £ and o. This decomposition was found con-
venient. It replaces, in effect, the elements of the
density matrix with the coefficients of the standard
matrices, namely 1, P,, P,, and P, in (4.2), which are
directly observable parameters being the mean values of
physical quantities. Indeed (4.4) constitutes an equation
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of motion of the spin expressed entirely in terms of the
observable vector parameter P.

This representation can be generalized. The operators
1, ¢4, 04, and o, are orthogonal, in the sense that the
product of any two of these operators has trace zero.
For a generic system one may consider a set of operators
U ; which are Hermitian, except when otherwise noted,
and obey the orthogonality condition

C represents a normalization factor which will be taken
as 1, for convenience, unless otherwise noted. For
systems whose complete operators have N orthogonal
eigenstates, so that p has N rows and columns, N?
linearly independent operators constitute a complete
orthogonal set of base operators.

Each operator Q of the system can be expanded into a
sum of U/’s,

Q= 2 Tr(QU ) U= Q.U..
In particular the density matrix is represented by
o= Tr(pU)U;=3 UdU;=2_ipUs (6.3)

The state is thereby identified by the parameters p;
which are the mean values (U;) of the base operators.
The mean value of any operator Q is a linear combina-
tion of the p;’s,

(@=Tr(Qe)=2: Qi (6.4)

Suitable choice of the U/’s serves to eliminate irrele-
vant variables, much like the choice of coordinates does
in classical physics. The initial state of a system is often
identified by the fact that certain types of operators
have mean value zero, as seen in the examples of Sec. 4.
It is then convenient to include these operators among
the U/’s. With regard to the final state of the system one
is often interested only in predicting the results of
certain experiments, i.e. the mean values of only a few
operators. If these operators are included in the U,’s,
then only a few of the p;’s have to be calculated. This
approach is most effective, of course, when the equations
of motion interlink only some subsets of the p,’s.

It is usually convenient that one of the base operators
be the unit operator, to within a normalization constant.
This operator will be indicated as

Uo=[Tr(1) I, (6.5)

where the normalization is such that C=1in (6.1). The
operator U, commutes with all other operators, and its
mean value

(6.2)

po=(Uo=[Tr(N) ] (6.6)

is the same for all states of the system, owing to the
normalization condition Tr{fp}=1. A state is then
identified by the N?—1 parameters p; with 7>£0. The
condition (6.1) requires that

Tr{UoU )= Tr{IU} =Tr{U} =0, i#0, (6.7)

for
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i.e., that the sum of the eigenvalues of U; vanish for
17#%0. States of random spin orientation or of zero
polarization, i.e., states of minimum information, are
represented by a density matrix proportional to X
(““equiprobability”’) and, therefore, by zero values of p;
for 15#0. Departures of p; from zero represent positive
elements of information about the state.

When there are N rows and columns, Uy=N—%1.
When N is infinitely large, the situation is somewhat
akin to that encountered in the normalization of wave
functions in the continuum and in the application of the
Dirac é function.

The Schroedinger equation (3.12) takes the form of a
system of linear equations among the mean values
pi={(U;). Replacing p with > pxUs on the right of
(3.12), multiplying (3.12) by U, and taking the trace
one obtains

6pi/6t= —aip L Zk TI’{ U,[H,Uk]}pk
=it 3% Te{HLU ;,Ux 1} pr, (6.8)
that is

ap«;/(”= Zk Qikpk, (69)

where Qi is an antisymmetric matrix. The set of
commutators [U;, U] can again be expanded into a
sum of base operators

LUsUxl=2pcar?Uyp, cax?=Tr{U[U;Usl}, (6.10)

where the coefficients ¢;?, antisymmetric in (z,k) and
real, are an important property of the set of base
operators.

The matrix Q;;, of the system of Egs. (6.9) is therefore
real,

Qik=2p Cix? Tr{h‘lHUp}=—Qki, (611)

and represents an infinitesimal orthogonal transforma-
tion. Notice that Q,=Q¢,=0 since all U,’s commute
with U,. The eigenvalues of @ are imaginary and equal
to 7 times the beat frequencies #'(E,,— E,,) among the
eigenvalues E,, of H, as seen in (3.15).

The operators U; need not be Hermitian. If they are
not, one must consider also their adjoint, or Hermitian
conjugate, operators UF=U;* (where ~ indicates
transposition and * complex conjugation). Equations
(6.1) to (6.4) are then replaced by

Tr{UiUk+}=62-k, (612)
Q=2 Tr{QUMU =2 QFU:=2_: QU+, (6.13)

p=2 i Tr{pUY U= pitUs=2: piUF,  (6.14)
O)=2:Qitpi=22:Qwpst, (6.15)
and (6.10) by
LU LUt ]=20 cac”Up,
ca?=Tr{U " [ U, Ut ]} = —cri?*, (6.16)

whereas (6.9) and (6.11) remain unchanged.
The immediate generalizations of the set of Pauli
matrices, X, o, oy, and ¢, include: (a) the set of 16
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double operators for two-photon polarization XY ®),
IWg B ... ¢, Mg, B qutilized in Sec. 4d, (b) the sets
of 16 Dirac operators I, v, v2* " -, v1v2vsya or 1, py,
P10 2+ - * p3dz, (c) the sets of (2j+41)? multipole operators
pertaining to the orientation of particles with spin 7,
which were referred to in Sec. 4b. The multipole
operators are conveniently chosen in tensorial form
Ukg 1e. so that they transform under coordinate
rotations like the spherical harmonic functions ¥ ,(6,¢),
with & integer running up to 25 and ¢ running in integral
steps from —£% to k (F53). The 241 operators with a
given & and different ¢ represent the components of the
2k-pole moment of the particle, to within a normaliza-
tion constant. Because of the Wigner-Eckart theorem
(FR57, Sec. 14), the matrices of the multipole operators
are standard Wigner coefficients, properly normalized.

The operators Q(?, defined in Sec. 4g as orthogonal to
all powers of the Hamiltonian H, may also conveniently
be chosen as orthogonal to one another; together with a
set of orthogonal functions of H, they form a complete
system. The Wigner phase-space density operators to be
discussed in Sec. 9 also constitute a complete orthogonal
set.

Orthogonal sets of operators have a role analogous in
many respects to the role of orthogonal coordinates in
the phase space of classical particle mechanics.!!

7. HILBERT SPACE REPRESENTATION

Equations (6.4), and (6.2) and (6.3) as well, have the
familiar form of scalar products of vectors. A geo-
metrical representation in Hilbert space is indeed ap-
propriate but this space is not the usual Hilbert space of
quantum mechanics.

In the usual representation the NV eigenstates #, of
(3.1) are taken as base vectors, and all pure states ¢ are
vectors of unit length of an N-dimensional Hilbert
space. The density matrix p.. is a second degree tensor
of this space.

Here we consider a Hilbert space with N?* dimensions,
of which the eigenstate products #,u%. constitute one
set of base vectors. The density matrix p is a vector in
this space, with the components p,,- in the coordinate
system of base vectors #,u,*. Any operator Q is also
represented by a vector, with the components Q,, in
this system, and the mean value (Q) may be visualized,
according to (3.5), as a scalar product Q- .

The condition (6.1), with C=1, defines the set of
operators U; as an orthonormal system of base vectors,
which replaces the system #,u%,t. The following equa-
tions of Sec. 6 simply restate the vector equations of the
Hilbert space in terms of the new coordinate systems. In
vector notation (6.2), (6.3), and (6.4) read, respectively,

11 The description of states and of their variations in terms of
standard operators and of their mean values can be developed in
many directions. For example, Bopp (B56) has been considering
standard operators with positive eigenvalues, with the aim of
treating the variations of their positive mean values as stochastic
processes.

Q=Zi(Q'Ui)Ui=ZiQiUi, Q:Zi(Q‘Ui)Ui=ZiPiU:’)
and (Q)=p-Q. All physical equations are real when
expressed in terms of the hermitian operators U..

Equation (6.6), equivalent to (3.7), fixes the value of
the component pg of g, and thus states that the tip of the
vector which represents g as drawn from the origin of
the Hilbert space lies on the hyperplane of points x with
the coordinate xo=[Tr(Y)]*=N-%* The condition
(3.11) takes the form p- <1 and thus limits the tip of p
to the interior of a hypersphere of radius 1. The condi-
tion g-p=1 is achieved only for pure states, of which
there is only a (2N—2)-dimensional manifold, as dis-
cussed in Sec. 3g. In mathematical language, this
manifold at which g- ¢ reaches 1 consists of the “extreme
points” of the “convex core’” which contains all possible
positions of the tip of g (W32, p. 79).

The unitary transformations S of the pure state
vectors y are represented by all rotations of the ordinary
Hilbert space of quantum mechanics. In the Hilbert
space considered here the S are also rotations, which
transform a vector Q representing the matrix ( into a
vector Q' representing SOS~. The S are only a subgroup
of all rotations in this space, because they are limited by
the requirement of leaving invariant the manifold of
extreme points g-g=1. The ordinary Hilbert space is
convenient for ordinary quantum mechanical applica-
tions because it represents as generic rotations the
transformations S, which include the changes of state
arising in the course of time from conservative inter-
actions within a system. The representation considered
here is convenient for more general applications, in
particular for the transformations arising from inter-
actions that are in effect nonconservative (see Secs. 10
and 11).

8. MEASURES OF INFORMATION

Pure states of a system, with p-p=Tr(p?) =1 afford
a maximum of information; states with p=pcU,
=[Tr()T1, and ¢- o=[Tr(X) '=N-, afford a mini-
mum of information. The statistical fluctuations of a
physical quantity, represented by (0%—{(0)?=Q -po
—(Q-p)? tend to increase as p-g decreases from 1 to
N7, because the second term is quadratic in p.

The eigenvalues p; have the distribution (1,0,0---)
for pure states and become increasingly uniform as g-p
decreases, to the point of being all equal to N7 for
states of minimum information. This transition of the
spectrum of p may be represented by variations of
functions of the form

2 fp))=Tr[ f(p)] (8.1)

which serve as indices of the quantity of information

about the system. A quantity of this type is independent

of the representation of p and also invariant in the

course of time if p obeys the Schroedinger equation.
The quantity

2ipi=Tr(p)=9-0<1 (8.2)
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serves itself well as a measure of information, for many
purposes. In the representation in terms of orthogonal
operators (Sec. 6), we have

N2—1 N2—1 N2—1
Tr(p)= 2 pf=N"'+ X pi=N"'4+ 2 (U} (83)
i=0 i=1 i=1

The quantity of information above the lower limit N—!
appears here to consist of additive contributions repre-
sented by the squared mean values of operators with
trace zero. The spin operators o of (4.2), the operators
0™ of (4.12) and Q? of (4.18) are all traceless. The
degree of polarization P in the spin orientation density
matrix (4.2), or in the corresponding light polarization
matrix, is closely related to Tr(p?), since in this example
we have

N 2
T-rHp, Po2n(). 69

One may generalize the concept of degree of polarization
by defining
N

=—im1p. (8.5)
N—-1

Qualitatively, the idea of quantity of information
implies that the total information in a number of
separate systems is the sum of the quantities of infor-
mation on the various systems. According to (3.20),
the density matrix p(¢® of two uncorrelated systems is
the product of density matrices p(® and p® of the two
systems. We have then

Tr(pte?)=Tr(p'®)* Tr(p)™ (8.6)

Thus In Tr(p?) is additive and corresponds to the con-
cept of quantity of information better than Tr(p?
itself. The In Tr(p?) ranges from —InN up to O.

In statistical mechanics it has been known for a long
time (NS5, T38), that the entropy of a system coincides
with the mean value of —% Inp,'? where % is the Boltz-
mann constant, that is, with

(—kInp)=—% Tr(p Inp). (8.7

The connection between entropy and quantity of in-
formation suggests then that Tr(p Inp)=(Inp), or, still
better, Tr[p In(Vp)]=({In(Np)), be regarded as a suit-
able definition for the quantity of information. This
definition allows one to introduce a quantity of informa-
tion operator In(Np), which has itself the additivity
property

In(Nappt*?) =In(N ap?)+In (N pp¥)

whenever the states of ¢ and b are uncorrelated.
Notice that Tr(p Inp) and In Tr(p?) vary between the
same limits and that their values are never very differ-

(8.8

12 The matrix Inp is identified by having the same eigenstates as p
and the eigenvalues Inp;, equal to the logarithm of the eigenvalues
of p. Stratonovich (S55) has emphasized that Tr(p Inp) is con-
veniently expressed as 2 p; Inp; even when p is initially identified
otherwise than in terms of its eigenvalues and eigenfunctions.
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ent. Since Tr(p?) may be expressed as (o}, we are com-
paring here (Inp) with In{p).

The condition Tr(p Inp) =minimum may be utilized in
quantum mechanics much like the condition of maxi-
mum entropy in thermodynamics or the condition of
maximum number of complexions in classical statistical
mechanics. The condition Tr(plnp)=min with the
subsidiary condition that certain operators L have
assigned mean values (L") determines (N27, S55) that

P=exp(7_2r 'Y'rL(T))- (89)

The constants v, v, are fixed as usual by the subsidiary
conditions. The state of thermal equilibrium (4.17) is
obtained by this procedure, when the set of L consists
of the Hamiltonian H only ; theny;=1/kTandy= —InZ.
The discussion of Sec. 4g shows that the condition
Tr(p Inp) =min incorporates into p the following infor-
mation, in addition to the values of the (L”): (a) all
quantities Q@ such that Tr[Q®f(L®...L®...)]=0
have mean value zero, (b) all quantities f(L®- .. L®M...)
have mean values which are specified functions of the
(L") and of the parameters v, v,.

9. WIGNER PHASE SPACE DENSITY OPERATORS

Wigner has defined (W32) a quantum analog of the
function p(R,P) which represents a statistical distribu-
tion in phase space of the states of a particle according
to classical mechanics. If the state of the particle is
identified by the density matrix in the scheme of posi-
tion coordinates r, (r'|p|r”), the Wigner distribution
function is

p(R,P);—Zf—nlr_)*" fdr(R-!—r[p[R—r) exp(e#~1P-2r). (9 1)

This function can be generalized immediately to a many-
particle system and has proved useful in statistical
mechanics (see, e.g., M48, 1Z51).

The values of the function p(R,P) constitute a set of
parameters p;=(U ), as defined by (6.3). They are the
mean values of the operators Urp with the matrix
representation

(t'|Ure|t")= (hr)-36(2R—1'—1")
Xexp[#P- ('—~1")]. (9.2)

(R and P are parameters, not operators.) The operators
Urp are Hermitian, have trace #% and form an
orthogonal set, since one verifies from (9.2) that

Tr(Urp'Urp)=k35(R—R)6(P—-P"), (9.3)

but this set does not include the unit operator. The
normalization constant C of (6.1) is, therefore, #~3. Any
operator with a matrix (r'|Q|r”’) can be represented as a
linear combination of URP; the coefficients 4% Tr(QUrp)
are calculated by selecting out the matrix elements of Q
on the skew diagonal r'+r”=2R and taking their
Fourier transform.
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The operator Urp applied to a function f(r) changes
it into (7m)~% exp[##P-2(r— R)Jf(2R—r). It follows
that Urp has eigenfunctions of the form

f(@®)=exp(#P-r)u® (r—R), 9.4)

where #® is an even or odd function of its variable. The
corresponding eigenvalues are == (%)%, respectively.
These eigenvalues are highly degenerate; complete
systems of orthogonal functions (9.4) can be con-
structed.®

The eigenfunctions (9.4) are wave packets which
represent states of the particle with (r)=R and (p)=P.
The existence of negative eigenvalues of Ugp constitutes
a quantum effect to be contrasted with the condition
o(R,P)>0 obeyed by the classical distribution function.

10. INTERACTION WITH AN UNOBSERVED
SYSTEM. IRREVERSIBILITY

When two systems a and b interact, or have been in
interaction for a certain period of time, practical interest
often centers in the resulting state of @ only, irrespective
of what has become of &. This state is described at a
time ¢, according to (3.18) and (3.13), by

(p(®)e=Try[ (p¢*¥) ]

=Tr,[exp(—iHt) (p(?) o exp (i~ H1)], (10.1)
where the Hamiltonian may be regarded as
H=H,+HytV, (10.2)

V being the interaction.

The density matrix p(®, as defined by (10.1), does not
obey the Schroedinger Eq. (3.12) or the equivalent
Eq. (6.9). If orthonormal operator sets U; and V, are
introduced for the systems ¢ and b, respectively, the
complete density matrix p¢¢® is identified by parameters
pir, according to (6.3), pe®=3"., p,,U;V,, and p® by
the subset of parameters p,

p@=[Try(X) 1 2 :pals. (10.3)

The Schroedinger Eq. (6.9) governs the simultaneous
variation of all the p;,, but we are interested here in the
variation of the pj only. In the Hilbert space repre-
sentation, the complete density matrix is represented by
a vector p(*® which experiences a rotation in the course
of time. The components p; define, through (10.3), a
vector o(® which is the projection of g(® on the
subspace with base vectors U ;V,. The vector magnitude
0(e¥.0(¢¥ is conserved in the course of time but the
magnitude of its projection, g(®-9‘® which indicates
the quantity of information on the system a, is %ot
conserved, in general.

In problems of atomic collision often one does not
attempt to follow the time variations of (p‘?), but one

13 Dr. M. S. Green points out that the operator URP is repre-
sented, in terms of projection operators ®R‘® such that R f(r)
=@1/2)[/()=£f2R-1)], by

URP= (hir)~3 exp (5P - r) (PR —PRO ] exp (— kP -1).

inquires about the density matrix of the final state
f, corresponding to ¢= . The operator exp[ —i%1H{]
in (10.1) takes then an asymptotic value for f= oo,
which may be represented by a scattering or reaction
matrix T and (10.1) becomes

(0@) ;=Try(p(®) ;=Try[ T (p*¥)T]. (10.4)

If one calculates (p(®); or (p‘¥); as a matrix, one
takes only the trace over eigenstates of b, as indicated in
(10.1) and (10.4). Alternately one may want to calculate
the corresponding parameters (pi): or (p:0)s, Or even
only the mean value of certain operators Q(® which are
of interest. In this event one takes the trace over
eigenstates of both 4 and q,

(pi0) :=[Trs(X) 7 Tras[ U exp(— it Ht) (pas)o

Xexp(ihHE)], (10.5)
(Q@)=Tras[Q® exp(—i#H!) (pav)o
Xexp(#HY)].  (10.6)

Equation (10.1) is a suitable point of departure for
the description of irreversible processes, such as vis-
cosity or the relaxation of spin orientation in nuclear
induction. Quantum mechanics is set up to treat re-
versible, conservative, processes, and deals in principle
with any phenomenon by extending the treatment to a
system large enough to be isolated, and hence conserva-
tive. Indeed the complete system a-b considered in this
section is assumed to be isolated and the variations of
(0(a?), in the course of time are reversible, inasmuch as
the initial state description (p¢?®), can be generated
mathematically from (p(*®), by the inverse transforma-
tion exp (i 1Ht) (p(*?), exp(—i#1HY).

In the calculation of (p(®), according to (10.1) much
information about the whole system is discarded when
one calculates the Try[ - - - ]. It is nevertheless implied,
in general, that the full matrix (p‘*?),, which results
from a reversible transformation, has to be calculated
prior to the trace calculation. Furthermore, the calcula-
tion of (p(2?),implies, at least in principle, a calculation
of (p‘®), for each ¢ between 0 and ¢.

Irreversible processes are special phenomena in which
much of the information included in p(*® at a time ¢ is
not relevant to p{® not only at the same instant ¢’ but
also at later times ¢>#. For example, when a nuclear
spin S;, part of a macroscopic amount of matter, is
driven to precess by a magnetic field, its precession
exerts a magnetic disturbance on the surrounding
particles and these disturb, in turn, particles further
away. Owing to the very large number of particles, the
initial disturbance keeps propagating away and will not
react back onto S; at later times to any significant
extent. The details of this disturbance may accordingly
be ignored. That is, one may replace at each time ¢’ the
actual (p(@?), with a simpler (p,(?), which contains
less information about & without introducing any sig-
nificant error in the final result (p(®); of (10.1). In the
Hilbert space representation, the actual vector p¢¢? is
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replaced with a different, “shorter,” g,(*¥» which not
only has the same projection g¢® but also will evolve in
the course of time so that its projection remains
effectively the same as that of the correct p¢e®. The
difference between p,(*® and p(¢? is, however, essential
from the standpoint of generating back (p(*®), by in-
verse transformation ; exp (i Ht) (0,2 ?) s exp (— % HY)
cannot be expected to resemble (p¢*?),. That is to say:
the transformation of (p;¢*®), in the course of time is
adequate to represent correctly (p‘¥);=Tr;(p¢*?),
~Try(ps{*?),; but it is definitely irreversible, whereas
the transformation of (p(*®), is reversible.

In conclusion, the interaction of ¢ with b constitutes
an irreversible process when the resulting variation of

p(® may be adequately described in terms of an irre-

versible (p,(*?), instead of the correct (p(*?),. Section
11g will indicate a simplification of (10.1) which consti-
tutes an adequate approximation under typical condi-
tions of irreversibility and which leads to a variation of
(p‘®); governed by a differential equation. Section 11h
will give an equivalent but somewhat more systematic
derivation of the same result.

11. APPLICATIONS OF OPERATOR TECHNIQUES

The results of quantum-mechanical calculations can
always be expressed by the trace of multiple operator
products, like (10.6). Whenever the initial or final
states are not specified with a maximum of detail, the
final formula of a calculation has in essence the same
structure as (10.6), whichever analytical procedure has
been employed.

The elementary procedure for calculating a
Tr(4B- - -F) is to calculate a matrix representation for
each factor, 4, B, ---F, and then to work out
the multiple sum over products of matrix elements
> ijet AijBjie - - Fri. This procedure requires one to
specify several states with complete sets of quantum
numbers, indicated here by 4, j---, which are usually
irrelevant to the problems. Therefore, this procedure
not only is laborious but tends to obscure the underlying
physical processes and the nature of approximation
methods through the introduction of irrelevant variables.

These disadvantages can often be avoided by working
on the formal solution of a problem, as indicated in
Sec. 10, by a variety of operator techniques. An ap-
proach of this kind has been utilized widely in problems
involving Dirac spinor variables (see, e.g., H54, p. 216)
and is sometimes called the “Casimir trick” (C33, K55).
Procedures of operator algebra and calculus (F51) and
reduced matrix techniques (FRS57) may be utilized in a

14 Van Hove (VHS5S5) has given a quantum mechanical treatment
of irreversibility which has elements in common with the develop-
ments of Sec. 11g and h but which deals with a somewhat different
question. It considers a single large system, such as ¢ and b com-~
bined, and inquires about the variations of an operator Q which
commutes with an unperturbed Hamiltonian, corresponding to
H,+Hp in (10.2), but not with V. The connections between the
Van Hove approach and the approach presented in this review
have not been fully explored.
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variety of problems to take advantage of symmetries
and invariances and to carry out approximation ex-
pansion, with no resort to the explicit matrix repre-
sentation of operators. The correspondence to the
classical variables represented by the operators remains
thus in sight.

Many of these procedures have been developed re-
cently and in connection with specialized applications.
This section will survey a number of different examples
in condensed form, referring to the original literature for
details. The last two subsections, relating to irreversible
processes with which the author has been particularly
concerned, will be developed in somewhat greater detail.

(a) Rotational Invariance. Tensor Operators

For systems effectively isolated in space, the results
of a calculation must be independent of the orientation
of any coordinates which are utilized. As an example,
we consider here the emission of a particle ¢ by a
radioactive nucleus which is left in a state b subject to no
orientation analysis. We inquire about the angular and
spin distribution of the radiation @, on the basis of
information on the initial state of the nucleus indicated
by ab.

A harmonic analysis of this distribution is per-
formed, in effect, by representing (p(®); in the form
[Trsl 1?3 : paolU T, corresponding to (10.3) and (6.14),
with the U ;* chosen to be tensor operators, i.e., such as to
transform under coordinate rotations like the spherical
harmonic functions Y;,(0,0). (Because the Y, are
complex, the transformation law implies that the U; are
not Hermitian, hence the expansion of (p'®), follows
(6.14) instead of (6.3)). The parameters p; vary contra-
grediently to the Ut and are to be calculated through
(10.5). In this equation the Hamiltonian H is invariant
under coordinate rotations, if the nucleus is isolated.
Since H is invariant and the whole Trq3[ -+ -] in (10.5)
is to be invariant, the initial state matrix (p4s)o may
then contribute to the trace only through a portion of
itself that varies under coordinate rotations contra-
grediently to U, so as to cancel out the variation of U ;.
If (p'e®), is represented, according to (6.14), in the
form 3, p,U,*, with the U,* chosen again to vary like
spherical harmonics, there will usually be only one
operator U,* with s=s; that transforms contra-
grediently to U, and only this term s=s; will contribute
to Tras[ -+ ]. (At most there will be a few such terms.)
Equation (10.5) reduces then to

(pm)g= [Trb(l):l-5 Tra b[Ui eXp(—ih_lHt) Usi
Xexp (- 'Ht) Josi.  (11.1)

Thus each parameter py of the radiation distribution
depends only on the parameter ps; of the initial nuclear
state which has the same transformation law under
coordinate rotations. This selection rule is qualitatively
almost obvious. For example, if the initial nuclear state
has axial symmetry—which happens when the nuclear
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spin is oriented by paramagnetic polarization—all its
tensor parameters p, that depend on coordinate rota-
tions about the symmetry axis vanish. Equation (11.1)
shows that the corresponding p.o’s vanish too. Therefore
the radiation distribution has also axial symmetry,
which indeed was to be expected.

This analysis of calculations on the basis of rotational
transformation properties has been exploited to various
extents in applications to the theory of angular correla-
tions and of disintegration processes (TG49, F51a, D52,
WAS2, CJ53, F53, W53, W54b), and is developed
systematically by tensor algebra in (FRS7, particularly
Sec. 20).

(b) Depolarization Coefficients

An analysis based on tensor algebra also exploits the
following consideration, for the calculation of Trqs[ - -+ ]
in (11.1). Since the angular momentum is a constant of
the motion, the Hamiltonian operator is diagonal in the
scheme of eigenstates with quantum number 7, where j
is the spin of the initial nuclear state. It is then con-
venient to represent all operators in this scheme. The
operators U; of the emitted radiation are initially ex-
pressed in the scheme of angular momentum quantum
numbers 7, of the radiation. The transformation from
the scheme j, to the scheme j depends on the spin ;" of
the residual nucleus, owing to the conservation of
angular momentum in the disintegration, J=J'+17J,, but
involves only geometrical relations of coupling inde-
pendent of the physical process of disintegration. When
no observation is performed on the orientation of the
residual spin, the transformation of U; to the scheme j
consists in essence of multiplying its matrix by a Racah
coefficient W which is a function of the quantum
numbers 4, j, and 7’ and of the degree of the spherical
harmonic with transforms like U; The factor W thus
introduced in (11.1) is no larger than 1 in absolute value
and thus reduces the value of the parameter (o) which
is a coefficient of the harmonic analysis of the radiation
distribution. The larger the spin 7 of the residual
nucleus the smaller are W and (p:0):, so that the radia-
tion distribution is more smeared out. This was also to
be expected because more potential information has
been lost by failing to observe the orientation of this
nucleus. Therefore W may be called a depolarization
coefficient. It indicates how much of the information
originally available on the orientation of the nucleus
fails to express itself in the radiation distribution owing
to failure to observe the residual nucleus.

The experiment on light emission discussed in Sec. 5
is, of course, quite analogous to the nuclear disintegra-
tion process considered here. Equation (5.1), expressed
in terms of spherical harmonics, has the form

10 64
I(0)p ‘; [1—‘1‘]'6P20(0)]I+-16P22(0)0'; , (11.2)

with Pao=(3/2) cos?d— (3) and Pg=(3/8)! sin%. In
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the calculation of (11.2) the coefficients of Pgy and Pgy
have been reduced by a factor 15 owing to a W coeffi-
cient which takes into account the quantum number
7'=2 of the atom after the radiation emission. If the
atom were left in an s state (5'=0), this factor & would
not appear; indeed the light emitted in a transition
from (/=1,m=0) to I=0 is fully polarized and its
angular distribution is well modulated, as indicated by

1()p < [1—Pyo(8) A+ 62P22(0) ¢ =3 sin?d (L+oy). (11.3)

(c) Interaction Representation—Feynman Calculus

Equation (3.18) shows that the calculations of a
mean value (Q) in the Heisenberg representation
(Q=0Q(#), p=const) and in the Schroedinger representa-
tion (Q=const, p=p(¢)) are manifestly equivalent.
When the Hamiltonian consists of two or more terms, as
in (10.2), other representations are possible, in which
the time variations induced by different terms of the
Hamiltonian are separated out. The Hamiltonian (10.2)
contains independent-system terms H,+H; and a
coupling term V. In the “interaction representation”
the variations induced by H .+ H may be applied to Q
and the residual influence of V applied to p. This
representation is particularly convenient when Q=Q(
and commutes with Hj, because H;, causes then no
variation of Q.

The formal derivation and the applications of the
interaction representation are facilitated by Feynman’s
operator calculus (F51) which shows how to “disen-
tangle” operators contained in the same exponential
function, to find

exp[— iV (H o+ H 4+ V)t]
—exp[— it (H o+ H 1)t]

Xexp[—ih‘lft V(t’)dt’], (11.4)
with ’
V() =explifi ' (H o+ H )tV

Xexp[ —ia Y (Ho+Hy)t], (11.5)
and the reciprocal formula

explin(H ,+H -+ V)i ]
t
= exp[ifrl f V(Hhdt } expli# Y (H . +Hyt]. (11.6)
0
Equation (10.6) becomes, in this representation,

(Q(a)>=Trab{Q(a>(t) exP[_ .h—lf‘ V(t’)dt'] (pe®),

Xexp[iﬁ"lft V(t’)dt’]}, (1.7
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where Q@ (f) is independent of H3, and (10.1) becomes
(p'?) e=exp(—iZH df)

t
XTrbl exp[——ih—lf V(t’)dt’](p<ab>)0
0

Xexp[ih f V(t')dt']}exp(ih‘lHat), (11.8)

where H3 has dropped out from the expression of the
trace.

Feynman (F51) has also pointed out how, given an
operator, such as V| acting on both systems @ and 5, one
may calculate its matrix elements between states of &
only, so that these matrix elements are still operators
with regard to a. To this end one may expand the
operator V into operators U; of @, according to (6.2),
V=>:V,U, the coefficients V; now being operators of
b only. We have then

V(l) =Z,~ V,(l) U,(t) = Z,, exp(ih“H ) Vi
Xexp(—ih™H ) exp (ihH ) U;
Xexp(—i#H,t), (11.9)
which enables us to calculate directly the matrix ele-
ments of V;(!) only, or also expressions such as the
Trs[--+]in (11.8).

In the calculation pertaining to b one may treat the
operators U;(f) as though they were ordinary functions
rather than operators. A main point of Feynman'’s
method lies in utilizing variable indices, such as {, to
keep track of the correct ordering of the operators of the
system a, even though the usual operator algebra rules
may have been formally disregarded in the calculation
relating to b.

(d) Perturbation Expansions

The results of the usual time-dependent perturbation
theory are easily obtained in a more general form by
utilizing the expansion (F51)

exp[ f A(t’)dt’]=1+ f AVt
0 0
+ f av f AAWYAW)+- -, (11.10)

which enables one to substitute in (11.7) or (11.8),
t t
exp[—-ih—lf V(t’)dt’](p(“b))o exp[ih‘lf V(t’)dt’]
0 0
t
= oot [ atTV W), (pe9)a]
0

w2 ar tdt”[V(t’),[V(z“),(p<ab>)0]j+..._
j': j:’ . (11.11)

The usual perturbation formulas are obtained by repre-
senting (11.11) in the scheme of eigenstates of H4+Hg;
the matrix elements of V (¢) are then simple exponentials
in¢, as in (3.15), and the integrations over # and ¢ may
be carried out analytically.

(e) Correlation Functions

When the systems e and b are initially independent,
i.e. when (p(@®)o=(p(®)(p®)o, V is expanded in the
form (11.9), and the perturbation expansion (11.11) is
utilized, the Try[---]in (11.7) or (11.8) depends on b
through a series of terms of the form

Tr{V(E)V (") - Valt™) (p)o}
=(Vi()Vi(t")- - V(™). (11.12)

These parameters are time-correlation functions of a
kind often considered in statistical mechanics, that is,
mean values of products of physical quantities taken at
different instants of time. (However, in classical me-
chanics the averaging is usually done by an integration
over time intervals, whereas in (11.12) we deal with an
ensemble average.)

In the frequent case where b is initially in a steady
state, i.e., when (p(®), commutes with H;, the correla-
tion functions (11.12) depend only on the time intervals
V=1t ¢"—1", etc. but not on the absolute values of #,
¢+« .. In this event (V;(#)) is altogether independent of
¢, and the pair correlation function (V;(#)V;(#")) de-
pends only on #’— ¢ and may be writtenas(V;V ;(¢''—¢')).

If the expansion V=3, U,V is not utilized, we
have instead of (11.12) expressions of the form
Tro{ VYV (") - - V(™) (p'P)o} which are operators of
the system @, whereas the parameters (11.12) are
numerical coefficients of the operators U;(#)U;(#"")- - -.
If (p'®)y commutes with H;, the dependence on the
absolute time scale can still be brought out of the
correlation function; we have then

Tr{ VYV (") - - - V() (pP)o}
=exp(ihHat') Trof VV (' —=1)- - V(I =1) (0D)o}
-exp(—inHot'). (11.13)

The correlation functions are proving increasingly
useful for representing and classifying the properties of
a system which are relevant to its interaction with other
systems. For a system initially in a steady state, the
static parameters (V;) represent constant fields that
produce elastic scattering effects, whereas the pair
correlations (V ;(0) V;(¢)) represent to first-order inelastic
interaction parameters. For example, Van Hove (VH54)
has represented the neutron scattering properties of a
crystal in terms of a pair correlation between the
positions of nuclei r;, r; in the crystal

G(r,0) =N—1( s

4, 7=1

fdr’&(r—l—r,-(O) —1')
Xé(r’—r,-(t))). (11.14)
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The function G(r,/) is a macroscopic property of the
crystal, but its definition is quantum-mechanical, atom-
istic, rather than phenomenologic. As a further example,
the dielectric constant of a material, determined by
electron polarizability, is defined, in terms of the G(r,?)
function for electrons (F56), by

NeZ ©
e(w)= { 14+— f dle‘"“"‘fdr
oo

/G(r’,t)—G(r',t)* -1

(f) Probability of Energy or Momentum Transfers

There is another approach which leads one to express

the probability of an interaction effect in terms of a.

correlation function (AP47). Suppose one inquires about
the probability P(w)dw that system @ transfers to b an
energy amount between Aw and %(w+dw) in the time
interval from O to ¢, irrespective of other effects of the
interaction. This probability is represented by the mean
value of an operator P(w) which is diagonal in the
scheme of energy eigenstates of @ and has in this schteme
the form 6(E,— E.,+%w), where E,; and E, are
eigenvalues of H, pertaining, respectively, to states at
the times ¢ and 0. The mean value of P is to be evaluated
according to (10.6). We represent P(w) in the form

1 >
P(w)=5(Eat“Ea0+ﬁw)=2— J dr exp(iwT)
TV

Xexp(th1E 1) exp(—ihEqr) (11.16)

and notice that both E,; and E,o may be represented by
the Hamiltonian H, operating, respectively, after and
before the interaction. Entering into (10.6) Q¥ = P(w),
we may write, in operator notation independent of a
specific matrix representation,

(P(w))= —2}7; f°° dr exp (iwT)

—o0

X Trqo{exp(ihH ,7) exp(—ih ' Hi)
Xexp(—i#1H ,7) (p(e?) exp (A HL)}. (11.17)

Further, utilizing the interaction representation (11.7)
and the expansion (11.9), and considering that for any
operator F@(f) in the interaction representation
exp (7 H ,7)F® ()exp(— it 1H o7)=F( (14 1), we have

(P(w»:;; f_ : dr expivr)
XTr[exp[—-ih—lj;tZ,- Ui(t’-I-T)V,-(t’)](P(“b))o

Xexp[ih_l f 5 Uj(t’)V,-(t’)]>. (11.18)
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In the first Born approximation the integrations over
¢’ are carried out through the second order term of the
perturbation expansion (11.11), and (11.18) becomes

(P (@):% fw dr exp(iwr) Trao{[: Us(r)V ]

X (pe?)o[32; UV},

where U,V represents that portion of the operator
product U,V ; which is diagonal in the total energy and
induces transitions with energy conservation, namely

(11.19)

7.V i= (ZWﬁ)_lfw atu () V(). (11.20)

It follows that U;(r)V;=UV(—1).

Expressions like (11.19) and (11.20) show explicitly
how transition probabilities depend on a time variable
whose role is obscured in the usual quantum-mechanical
formulas. For example, the absorption or emission of
light by an atomic electron depends on the correlation
between the electron’s position r or velocity v at time
intervals 7. (In this problem, we have }; U,;V ;=ev-A(r),
where A is the vector potential.) The probability of
emitting or absorbing a photon %w is proportional to the
spectral component o of the correlation function. Van
Hove was led to consider the correlation function G of
(11.14) (VHS54) through a formula similar to (11.19).
Wick (W54a) utilized such a formula as the point of
departure of an approximate calculation of neutron
scattering in which the correlation function is expanded
into powers of 7, to reflect the fact that a neutron
scattering process is short as compared to the vibration
period of a crystal lattice.

The probability of a momentum transfer #q may be
treated much like that of an energy transfer, in terms of
an operator 3(ps,—Paot+7q) expanded into a triple
Fourier integral. The operators exp (&% 'pq- £), which
replace exp(z=iZ'H,r) in (11.17) have the effect of
shifting all space coordinates in the operator U; by &, so
that the trace takes the form of a space correlation
function of the type (f(r) f(r+£)).

(g) Wangsness-Bloch Equation for Irreversible
Processes

Wangsness and Bloch (WBS33) treated the relaxation
of nuclear spin orientation, in essence, along the lines
indicated at the end of Sec. 10. The variable orientation
of the spin of a fixed atomic nucleus constitutes the
system a, whose Hamiltonian H , represents the coupling
with an external magnetic field H, and the system of all
surrounding particles constitutes b, the Hamiltonian H
being unspecified. At the initial time {=0, the states of
the two systems are assumed to be uncorrelated, so that
(p€@®)g=(p(®)(p'?)o, according to (3.20), with (p(®),
unspecified and (p(®)¢ assumed to be a state of thermal
equilibrium according to (4.17). The coupling V of a and
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b is also left unspecified except that TrV is assumed to
vanish, though only for simplicity.

The state of spin orientation at a somewhat later time
t=r, represented by (p‘¥),, is then given by (11.8) but
7 is assumed to be sufficiently small to warrant applica-
tion of the perturbation expansion (11.11) extended to
second order terms only. Disregarding further some
minor side effects, one finds

(p'9),=exp(—ihH ;1) Trb{ (0“)o(p ¥)o

_%[V,[V,(P(G))O(P(b))o]]} exp(thH,7), (11.21)

where V represents that portion of the operator ¥ which
is diagonal in the total energy and is defined according
to (11.20). (The first-order term is missing because TrpV
is assumed to vanish.)

To extend the calculation to larger intervals {£> 7 one
would need, in general, to know not only (p‘®), but the
density matrix of the whole system (p(e¥),. At this
point Wangsness and Bloch take into account that dis a
large system through which the effects of interaction
with the spin @ dissipate away quickly. Therefore, it is
argued, the state of & will not have changed significantly
during 7. The actual density matrix (p(*»),, resulting
from (p‘@)o(p'®)o by reversible transformation, is re-
placed with

(ps'P) 7= (p'9) (0 P)o.

The evolution in time of the combined system becomes
thereby irreversible.

If this (ps{*?), is entered into (11.21) in the place of
(09)9(p?)g, the result is (p'®)s,. The operation can be
repeated chainwise yielding (o‘®); at successive time
intervals 7, 27, 37, ---nr---. This repetitive operation
is analogous to the numerical integration of a differential
equation. Indeed, the variations of (p'®), thus obtained
obey a differential equation, where the interval 7 is
treated formally as a differential d#'®

(11.22)

dp®

dat
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Wangsness and Bloch (WB) pointed out that (11.23)
is a quantum analog of the Boltzmann equation of
statistical mechanics, and generalizes the Schroedinger
equation to incorporate irreversible transformations.
Expansion of p(® into orthogonal operators, p(®

16 In the derivation of (11.21) it is assumed that = is not
infinitesimal but, rather, that is sufficiently large for the spectrum

of the interaction, f V (¢) exp(—iwt)d to be effectively constant

over an interval dw=7"1. Therefore (11.21) and (11.23) represent
correctly only semimacroscopic time variations of p(®, leaving out
variations on a finer scale of time intervals  (dw)™L.

=3, p:U, brings the WB equation to a form analogous
to (6.9),
dpi/dt=23"1(Qirt+ M ix)pr,

with Q4 as in (6.11) and

(11.24)

M= —% Troo{ULV,[V,Ur(o®)o]]}. (11.25)

Equation (11.24) represents a transformation of the
vector p(® in the Hilbert space of Sec. 7, but we deal no
longer with a simple rotation because M,; is not
antisymmetric. With U ;= Uy« 1, we have M= =0
(but M ;540 in general), so that dpo/dt=0 as required;
it also follows that the determinant of Qu+M ik
vanishes, so that (11.24) has a steady state solution.

Further expansion V=3, U,V, makes it possible to
represent the matrix M ;; in terms of separate properties
of the systems a and b. The relevant properties of a
depend only on its mechanical structure as represented
by relationships among the operators U;. They depend
in particular on the coefficients ¢;? of (6.10) and on the
corresponding symmetric coefficients.

sia?=Tr[ (U U+ U U)Up]. (11.26)

Entering the expansion of ¥ into (11.25), working out
the double commutator, and separating out symmetric
and antisymmetric terms, one finds

™ -
M'L'k= _ZTS Aikr&£<vrvs+ VsVr>

7r — —
+ Bitre—(i[ V2,V s 11.27
k 2h<z[ Dt (11.27)

where
Aikrs=Akisr=Zp Cirpcksp, (1128)
Bikrsz _‘Biksr:Zp CirPSks?
—_ 1
'—Zp(isikpcrsp'{"%cirpsksp—%Gkrpsisp
— 1CisPS kP ECrsPSir?).  (11.29)

The coefficients 4 and B represent the properties of a.
They obey selection rules, arising from the invariance of
traces under coordinate rotation or under reflection in
space or time. For example, the ¢;;? vanish unless the
product of the parities of U;, U, and U, is odd, and the
six? vanish unless it is even, so that A4;z,,=0 if the
product U;UU.Usis odd and B,,=0 when it is even.

The mean values (V,V,+V,V,) and ([ V,,V,]) repre-
sent the relevant properties of 4. They are essentially
equivalent to the admittance matrix, with rows and
columns indicated by 7 and s, which has been introduced
by Callen and co-workers (CWS51, CBJ52). These
authors considered the reaction of a large system, like b,
to an external time variable potential Q, exp(iw?),
representing the reaction by the mean value of the rate
of change of another operator ., as calculated by first-
order perturbation. The Feynman calculus exploits the
analogy between the reaction of & to an external po-
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tential and to the interaction V with another quantum-
mechanical system @, by permitting one to calculate the
reaction to @ without considering at every step that V'
is also an operator of @.1¢

A system ¢ with N orthogonal eigenstates has N?
operators U;, so that the matrix Q;z+M i has N? rows
and columns. The relevant characteristics of b are
represented by N* coefficients (V,V,+V.V,) and as
many ([ V,,V,]). The matrix Q;z+ M ;; has N? complex
eigenvalues, whose real parts are time-relaxation con-
stants; one of these eigenvalues vanishes, in corre-
spondence to the steady states, the remaining N2—1
relaxation constants determine the rate of approach to
the steady state. All these parameters need not be
different and their number is often greatly reduced
owing to symmetry.

In the nuclear induction with spin %, there could be
N?—1=3 relaxation constants, but axial symmetry
about the main magnetic field reduces this number to 2,
corresponding to the well-known longitudinal and trans-
verse relaxation times. For spin 1 we have N?—1=8
constants, reduced to 5 by axial symmetry. However
Wangsness and Bloch argue that dipole and quadrupole
polarizations are effectively uncoupled in this case.l”
Hence the magnetic dipole polarization, which is re-
sponsible for nuclear induction, behaves for j=1 as
though 7 were 3.

(h) Irreversibility Approximation by Expansion
in Cumulants

Instead of introducing irreversibility through the con-
vention (11.22), one may formulate a systematic ap-
proximation procedure (F54b), which, when applied to
first order, reduces the exact expression (11.8) for (p%),
to a solution of the Wangsness-Bloch Eq. (11.23).
Qualitatively, if a system b is large and quickly dissi-
pates the effect of disturbances, one expects & to show a
“lack of memory” in its interactions with other systems,
such that the time variations of an operator V (¢) in the
neighborhood of time instants ¢ and ¢’ would be un-
correlated, for ' —¢" sufficiently large. Mathematically,
this lack of correlation should cause the mean value of
an operator such as (V;(¢)V;(#"") - - - V1 (¢%)) in (11.12) to
approach rapidly the product of mean values (V)(V;XV2)
as the time intervals '—¢”- - .#/—#(™ increase.

In order to take advantage of this circumstance one

16 The analog of Callen’s time variation exp (iwt) of the external
disturbance is included in the WB problem through the definition

Vot) =Tro{U,V (8)} =Tr{exp @hH ) U, exp(—ihH )
Xexp (7 H ) V exp (— it tHat) )}

which contains a factor_depending on all eigenfrequencies of H,.

17 The coefficients (V,V,+V,V ) and (i[V,V,]) can be classified
according to the multipolarity of the operators U, and U,. If U, is
a dipole and U, a quadrupole operator, V', represents a magnetic
field and V, an electric field, and WB assume that the fluctuations
of these different fields are uncorrelated so that the mixed-field
coefficients vanish. It follows then from the parity selection rules of
the coefficients Aixrs and Bijxs, that the parameters p; and px
pertaining to magnetic and electric polarizations will remain
uncoupled.

considers in particular the departures of an operator
from its mean value, defining for example UV (t)=V (f)
—(V(#))» (where (4), means Tr;4), so that (V(¢))»=0

V)=V ®)»+0@) (11.30)

TV Yo=YV @) ot (VO())s.  (11.31)

The mean value (VV(f)), is the correlation of “devi-
ates.” It represents the correlation effect proper and is
expected to vanish when ¢ increases above an effective
memory range, or relaxation time, of 4. This procedure
may be continued by separating out deviates of suc-
cessively higher orders, defining, for example,

VO ) =))W @)W ("), (11.32)

so that the deviates ‘W have not only (W (£))»=0 but
also (W)W ("))»=0; the W’s contribute only to
quadruple and higher correlations.

When expressions like (11.30) and (11.32) are entered
in the perturbation expansion (11.11), the mean values
of different orders (V(£))s, (O()V("))s, etc. can be
sorted out from the expansion. Leaving out the compli-
cations due to commutation with (p(¢®)y (see F54b),
and using (11.13) the reader may verify that the
simpler expansion

Tr{ exp( ~ih—1ft V(l')di')p“’) }

t
=Trbl [1—m—1 f V{dt
0

t t/
e f it f dl”V(t’)V(t")+~~-]p“’)] (11.33)
0 0

and

condenses to the exponential form

t
exp[ —ih! f dt’ exp(1hH ,t')
0
‘f
X[(V)b——ih—l f a0V — 1))
0

¢ ¢’
—#2 f at” f dt”'(‘O’U(t"——t')’O(t"'~l')>b+'"]

0 0
Xexp(—ih“Hat')l. (11.34)

The average of the exponential operator in (11.33) has
been thereby reduced to the exponential function of a
sequence of averaged operators, which are correlation
functions of increasing order. The reduction of (11.33)
to (11.34) is analogous to the equation of probability
theory (exp(1£))=exp(>_, t’k,/v!), where £ is a random
variable and the k, are the cumulants (&), ((§—(£)?),
{(#—(£))®) - - - of its distribution (C46).
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The expansion (11.34) affords a suitable point of de-
pariure for an irreversibility approximation. Three
steps are involved in deriving from (11.34) a simpler
expression equivalent to the Wangsness-Bloch Eq.
(11.23): (1) It must be assumed that, because of the
internal mechanics of system b, the correlation functions
in (11.34) vanish rapidly as #'—#", #/ —¢""" . . . increase, so
that, as ¢’ increases, the integrals in the brackets reach
rapidly a limiting value corresponding to #= o and

thus are no longer explicit functions of #' (short-memory

approximation). (2) The whole expression in the
brackets can be handled as a single operator of the
system @, acting at the time #, even though some por-
tions of it actually should operate at times ¢/, #//. ..
somewhat earlier than #. Disregarding these fine dis-
tinctions in the time scale is equivalent to treating the
time intervals r as differentials in the derivation of
(11.23). (3) The terms of third and higher order can be
disregarded. This assumption relates to the short-
memory approximation (1) because high-order interac-
tion effects would build up if allowed to accumulate for a
long time. It implies that second-order perturbation
treatment is adequate, as in (11.21), to describe the
effects of interaction upon o during each memory
interval.

Thus the whole effect of irreversible interaction with
system b is represented by pair correlation integrals of
the type fo® d(0V(—1))s Upon expansion into ortho-
gonal operators U(f) =3, U,0,(!) these integrals depend
on b through mean values (U, U,(—¢)) which are again
equivalent to Callen’s admittance matrix mentioned at
the end of Sec. 11g.
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