Семинар 14. Теория рассеяния и функция Грина

7 февраля 2018 г.

Постановка задачи рассеяния

Ранее (на семинаре про непрерывный спектр) изучалась задача одномерного рассеяния. В ней мы искали решения уравнения Шрёдингера в некотором локализованном потенциале V(x), имеющие следующие асимптотики вдали от рассеивающего центра (при $x \to \pm \infty$), включающие в себя падающую, отражённую, и прошедшую волны:

$$\psi(x) = \begin{cases} e^{ikx} + re^{-ikx}, & x \to -\infty \\ te^{ikx}, & x \to +\infty \end{cases}$$
 (1)

Такая постановка обобщается на пространство произвольной размерности. В рамках этого семинара будет рассмотрен трёхмерный случай. Пусть имеется локализованный рассеивающий потенциал $V(\mathbf{r})$; мы будем искать решения стационарного уравнения Шрёдингера $\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r})$, имеющие следующий асимптотический вид (см. рис. (1)):

$$\boxed{\psi(\mathbf{r}) \approx e^{i\mathbf{k}\mathbf{r}} + f(\mathbf{n}, \mathbf{n}') \frac{e^{ikr}}{r}, \quad r \to \infty}, \quad \mathbf{n} \equiv \mathbf{n_k} = \frac{\mathbf{k}}{k}, \quad \mathbf{n}' \equiv \mathbf{n_r} = \frac{\mathbf{r}}{r}, \quad E = \frac{k^2}{2m}.$$
 (2)

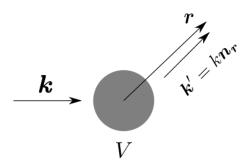


Рис. 1: Задача рассеяния в многомерном пространстве.

Направление n соответствует направлению падающей волны $e^{i\mathbf{k}\mathbf{r}}$, а n' — направлению на наблюдателя в точке r (направление рассеянной волны); введём также $\mathbf{k}' = k\mathbf{n}'$. Данный вид волновой функции представляет собой первые два члена асимптотического разложения по 1/r, поэтому, вообще говоря дальше будут иметься члены $O(1/r^2)$, но в рамках задачи рассеяния они нас не будут интересовать.

По аналогии с тем, как в одномерной задаче необходимо было найти величины (t,r) — амплитуды прохождения и отражения, так и в трёхмерной задаче необходимо искать неизвестную функцию f(n,n'), которая носит название амплитуды рассеяния. Несложно видеть, что она имеет размерность длины [f] = сm, и зависит в случае общего положения от направления обоих векторов¹; однако в случае сферической симметрии потенциала амплитуда рассеяния может зависеть только от угла рассеяния — угла θ между векторами n и n':

$$f(\mathbf{n}, \mathbf{n}') \equiv f(\theta), \quad \mathbf{n} \cdot \mathbf{n}' = \cos \theta.$$
 (3)

Потоки и сечение рассеяния Тот факт, что рассеянная волна содержит именно $\frac{1}{r}$, связан с сохранением потока вероятности в телесный угол в трёхмерном пространстве². Действительно, используя известную формулу из третьего семинара для потока частиц, в ведущем по $\frac{1}{r}$ приближении можно вычислить плотности потока частиц в падающей и рассеянной волне:

¹Хотя уже в случае общего положения она обладает определённым набором симметрий; в частности, с унитарностью рассеяния связано соотношение $f(\boldsymbol{n}, \boldsymbol{n}') = f(-\boldsymbol{n}', -\boldsymbol{n})$.

²В двумерном случае множитель был бы $\frac{1}{\sqrt{r}}$, а в одномерном его, как несложно видеть, вообще нет

$$\mathbf{j}_{\text{пад}} = \frac{1}{m} \mathbf{k}, \quad \mathbf{j}_{\text{pacc}}(\mathbf{r}) = \frac{1}{m} \frac{|f(\mathbf{n}, \mathbf{n}')|^2}{r^2} \mathbf{k}',$$
(4)

где $\mathbf{k}' = k \cdot \mathbf{n}'$ — волновой вектор рассеянной волны. Тогда поток частиц через некоторый телесный угол $d\Omega$ равен $dN_{\mathrm{pacc}} = \mathbf{j} \cdot \mathbf{n}' dS = \frac{1}{m} |f(\mathbf{n}, \mathbf{n}')|^2 k d\Omega$ — видно, что расстояние r из асимптотики волновой функции сократилось с $dS = r^2 d\Omega$; именно поэтому асимптотика волновых функций имеет именно такой вид. Наконец, по аналогии с классической механикой, можно ввести $\partial u \phi \phi$ еренциальное сечение рассеяния, которое определяется как отношение числа рассеявшихся частиц в единицу времени к плотности потока налетающих частиц:

$$d\sigma = \frac{dN_{\text{pacc}}}{j_{\text{пад}}} = |f(\boldsymbol{n}, \boldsymbol{n}')|^2 d\Omega_{\boldsymbol{n}'} = 2\pi |f(\theta)|^2 \sin\theta d\theta.$$
(5)

Оно имеет размерность площади $[\sigma]={
m cm}^2$ и может быть интерпретировано, как площадь поверхности, перпендикулярной потока, которая собирала бы на себя (в классическом случае) количество частиц, равное количеству частиц, улетевших в сектор телесных углов $d\Omega$.

Величину $\sigma = \int d\sigma$ называют *полным сечением рассеяния*³. Кроме того, в приложениях⁴ часто встречается так называемое *транспортное сечение рассеяния*, определяемое согласно:

$$\sigma_{\rm tr} = \int (1 - \cos \theta) d\sigma \tag{6}$$

Дальнейшее построение теории рассеяния сводится к изучению методов вычисления амплитуды рассеяния.

Функция Грина и теория возмущений

В случае слабого (дальше будет пояснено, в каком смысле слабого) потенциала, амплитуду рассеяния можно находить, используя теорию возмущений относительно невозмущенного гамильтониана $\hat{H}_0 = p^2/2m$. Пусть $|\psi\rangle = |\mathbf{k}\rangle + |\chi\rangle$ — искомая волновая функция задачи рассеяния ($|\mathbf{k}\rangle$ — падающая плоская волна, а $|\chi\rangle$ — рассеянная). Путём тождественных преобразований перепишем уравнение Шрёдингера (учитывая, что $\hat{H}_0 |\mathbf{k}\rangle = E |\mathbf{k}\rangle$, $E = k^2/2m$):

$$(\hat{H}_0 + \hat{V})(|\mathbf{k}\rangle + |\chi\rangle) = E(|\mathbf{k}\rangle + |\chi\rangle) \quad \Rightarrow \quad (E - \hat{H})|\chi\rangle = \hat{V}|\mathbf{k}\rangle \tag{7}$$

Таким образом, если мы научимся обращать оператор $(E-\hat{H})$, то формальное решение этого уравнение можно записать как $|\chi\rangle = (E-\hat{H})^{-1}\hat{V}\,|\pmb{k}\rangle$.

Резольвента (функция Γ рина) Объект, с которым мы только что столкнулись, носит название *резольвенты оператора* \hat{H} , и обозначается следующим образом:

$$(E - \hat{H})\hat{G}_E = \hat{\mathbb{I}}, \quad \hat{G}_E = (E - \hat{H})^{-1}$$
 (8)

Несложно записать решение этого уравнения в общем виде. Пусть $\{|n\rangle, E_n\}$ образуют спектр гамильтониана. В этом базисе оператор $E - \hat{H}$ легко обращается:

$$\hat{G}_E = \sum_{n} \frac{|n\rangle \langle n|}{E - E_n} \tag{9}$$

Это выражение означает, что на комплексной плоскости параметра энергии E, оператор \hat{G}_E содержит полюса; вычеты в этих полюсах дают проекторы на собственные подпространства гамильтониана. В предельном переходе к непрерывному спектру полюса сливаются в разрез; это будет продемонстрировано ниже на примере функции Грина свободной частицы.

Представление резольвенты в координатном представлении называется функцией $\Gamma puna^5 G_E(\boldsymbol{r}, \boldsymbol{r}') = \langle \boldsymbol{r} | \hat{G}_E | \boldsymbol{r}' \rangle$. Она удовлетворяет следующему уравнению:

$$(E - \hat{H})G_E(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}'), \tag{10}$$

при этом оператор $\hat{H} = -\nabla_{r}^{2}/2m + V(r)$ действует на первый аргумент (r) функции Грина. Несложно видеть, что она определена неоднозначно: если к ней добавить произвольное решение однородного уравнения (например, плоскую волну), то она по-прежнему будет удовлетворять уравнению (8) (это непосредственно связано с аналитической структурой функции Грина — на энергиях, где такое решение однородного уравнения существует, она имеет либо полюса, либо разрез).

 $^{^3}$ В случаях, если потенциал достаточно сильный или дальнодействующий (примером такого потенциала может являться Кулоновский потенциал $U(r) = \frac{e^2}{r}$), полное сечение рассеяния вполне может обращаться в бесконечность; ничего страшного в этом нет.

⁴Как правило, в приложениях, связанных с переносом и релаксацией импульса— а именно, при вычислении электрической проводимости или теплопроводности

⁵Мы будем использовать эти термины как взаимозаменяемые

Функция Грина свободной частицы Определим функцию Грина для свободной частицы $\hat{H}_0 = \hat{p}^2/2m$; и на этом простом, но тем не менее важном примере продемонстрируем основные свойства функции Грина. В силу трансляционной инвариантности, функция Грина для свободной частицы является функцией лишь разности координат $G_E^{(0)}(\boldsymbol{r}, \boldsymbol{r}') \equiv G_E^{(0)}(\boldsymbol{r} - \boldsymbol{r}')$. Для её нахождения, воспользуемся известным полным набором собственных функций гамильтониана \hat{H}_0 — набором плоских волн $\langle \boldsymbol{r} | \boldsymbol{k} \rangle = e^{i \boldsymbol{k} \boldsymbol{r}}$, нормированных условием $\langle \boldsymbol{k} | \boldsymbol{k}' \rangle = (2\pi)^3 \delta(\boldsymbol{k} - \boldsymbol{k}')$ — и формулой (9):

$$G_E^{(0)}(\boldsymbol{r}, \boldsymbol{r}') = \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} \frac{e^{i\boldsymbol{k}(\boldsymbol{r} - \boldsymbol{r}')}}{E - \frac{k^2}{2m}}$$
(11)

Тут мы немедленно сталкиваемся с проблемой: при E>0 этот интеграл не определён, потому что в области интегрирования имеется неинтегрируемая особенность при $E=k^2/2m$. Это полностью согласуется со сделанным выше утверждением, что в области непрерывного спектра функция Грина содержит разрез, и на самом разрезе она плохо определена. Функция Грина на верхнем берегу разреза, при E=E+i0, уже определена хорошо и носит название запаздывающей (retarded) функцией Грина, а на нижнем берегу — опережающей (advanced) функцией Грина. Это связано с тем, что преобразование Фурье по энергии — функция $G(t, \mathbf{r}, \mathbf{r}') = \int (dE) G_E(\mathbf{r}, \mathbf{r}') e^{-iEt}$ является пропагатором временного уравнения Шрёдингера $i\frac{\partial |\psi\rangle}{\partial t} = \hat{H}\,|\psi\rangle$; и запаздывающей функции Грина соответствует пропагатор $G^R(t<0) \equiv 0$, а опережающей — $G^A(t>0) \equiv 0$.

Для нахождения запаздывающей функции Грина можно поступить следующим образом: рассмотреть её на отрицательной энергии $G_{E<0}$, где интеграл определён хорошо, а затем аналитически продолжить его либо на верхний, либо на нижний берег разреза. Однако мы поступим более прямолинейно:

$$G_E^{(0,R)}(\mathbf{r}) = \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{e^{i\mathbf{k}\mathbf{r}}}{E + i0 - \frac{k^2}{2m}} = \frac{m}{2\pi^2} \int_0^\infty k^2 dk \int_0^\pi \sin\theta d\theta \frac{e^{ikr\cos\theta}}{k_E^2 - k^2 + i0} = \frac{m}{2\pi^2 ir} \int_0^\infty k dk \frac{e^{ikr} - e^{-ikr}}{k_E^2 - k^2 + i0} = \frac{m}{2\pi^2 ir} \int_{-\infty}^\infty \frac{k}{k_E^2 - k^2 + i0} e^{ikr} dk \quad (12)$$

Полученное выражение имеет полюса при $k=\pm(k_E+i0)$. Так как модуль радиус-вектора r>0, контур интегрирования замыкается в верхней комплексной полуплоскости, и вклад в интеграл даёт единственный полюс $k=k_E+i0$. Используя теорему о вычетах (а заодно, восстанавливая \hbar по размерности, поскольку это важный результат) получим:

$$G_E^{(0,R)}(\mathbf{r}) = -\frac{m}{2\pi\hbar^2} \frac{e^{ik_E r}}{r}, \quad k_E = \frac{1}{\hbar} \sqrt{2mE}$$
 (13)

Во-первых, отметим, что у функции Грина действительно имеется разрез в комплексности плоскости E (из-за \sqrt{E}). Путём аналитического продолжения (или просто комплексного сопряжения) легко получить выражение для запаздывающей функции Грина (опережающей):

$$G_E^{(0,A)}(r) = -\frac{m}{2\pi\hbar^2} \frac{e^{-ik_E r}}{r}$$
(14)

Во-вторых, запаздывающая функция Грина соответствует расходящейся волне, а опережающая — сходящейся. Поэтому для решения задачи рассеяния необходимо использовать именно запаздывающую функцию Грина.

Теория возмущений и T-матрица Для функции Грина удобно строить теорию возмущений; действительно, пусть функция Грина невозмущенного гамильтониана известна $\hat{G}_E^{(0)} = (E - \hat{H}_0)^{-1}$. В таком случае, полную функцию Грина можно записать в виде ряда:

$$\hat{G}_E = (E - \hat{H}_0 - \hat{V})^{-1} = \hat{G}_E^{(0)} + \hat{G}_E^{(0)} \hat{V} \hat{G}_E^{(0)} + \hat{G}_E^{(0)} \hat{V} \hat{G}_E^{(0)} + \hat{G}_E^{(0)} \hat{V} \hat{G}_E^{(0)} + \dots$$
(15)

В задаче рассеяния, однако, требуется найти не функцию Грина, а рассеявшуюся компоненту волновой функции $|\chi\rangle$. Как мы видели раньше, она равна

$$|\chi\rangle = (E - \hat{H})^{-1}\hat{V}\,|\mathbf{k}\rangle = \left[\hat{G}_E^{R(0)}\hat{V} + \hat{G}_E^{R(0)}\hat{V}\hat{G}_E^{R(0)}\hat{V} + \dots\right]|\mathbf{k}\rangle = \hat{G}_E^{R(0)}\left[\hat{V} + \hat{V}\hat{G}_E^{R(0)}\hat{V} + \dots\right]|\mathbf{k}\rangle = \hat{G}_E^{R(0)}\hat{T}_E|\mathbf{k}\rangle\,,\tag{16}$$

где был введён важный объект, носящий название \hat{T} -матрицы:

$$\hat{T}_E = \hat{V} + \hat{V}\hat{G}_E^{R(0)}\hat{V} + \hat{V}\hat{G}_E^{R(0)}\hat{V}\hat{G}_E^{R(0)}\hat{V} + \dots = (1 - \hat{V}\hat{G}_E^{R(0)})^{-1}\hat{V}.$$
(17)

 $^{^{6}}$ Для нас это будет ещё одним синонимом функции Γ рина

 \hat{T} -матрицу тоже удобно вычислять по теории возмущений, и, как мы покажем ниже, через нее легко выражается амплитуда рассеяния:

$$f(\boldsymbol{n}, \boldsymbol{n}') = -\frac{m}{2\pi} \left\langle \boldsymbol{k}' \middle| \hat{T}_E \middle| \boldsymbol{k} \right\rangle$$
(18)

Напомним, что здесь $|\mathbf{k}| = |\mathbf{k}'| = \sqrt{2mE}$ (находятся на «массовой поверхности»), хотя в принципе T-матрица определена для произвольных значений импульса.

Вывод связи T-матрицы и амплитуды рассеяния Воспользуемся уравнением (16) и запишем $|\chi\rangle$ в координатном представлении:

$$\chi_{\mathbf{k}}(\mathbf{r}) = \langle \mathbf{r} | \hat{G}_{E}^{(0)} \hat{T}_{E} | \mathbf{k} \rangle = \int d\mathbf{r}' (d\mathbf{k}') \langle \mathbf{r} | \hat{G}_{E}^{(0)} | \mathbf{r}' \rangle \langle \mathbf{r}' | \mathbf{k}' \rangle \langle \mathbf{k}' | \hat{T}_{E} | \mathbf{k} \rangle =$$

$$= \int d\mathbf{r}' (d\mathbf{k}) G_{E}^{(0)} (\mathbf{r}, \mathbf{r}') e^{i\mathbf{k}'\mathbf{r}'} T_{E}(\mathbf{k}, \mathbf{k}') = -\frac{m}{2\pi} \int d\mathbf{r}' (d\mathbf{k}') \frac{e^{ik_{E}|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} e^{i\mathbf{k}'\mathbf{r}'} T_{E}(\mathbf{k}, \mathbf{k}'), \quad (19)$$

где была введена T-матрица в импульсном представлении $T_E(\mathbf{k}, \mathbf{k}') = \langle \mathbf{k}' | \hat{T}_E | \mathbf{k} \rangle$. Заметим также, что $k_E = k$. Так как нас интересует асимптотика $\chi_{\mathbf{k}}(\mathbf{r})$ на больших \mathbf{r} , то разложим $|\mathbf{r} - \mathbf{r}'| \approx r - n_{\mathbf{r}}\mathbf{r}'$. В экспоненте сохраним два члена, а в предэкспоненте один:

$$\chi_{\mathbf{k}}(\mathbf{r}) \approx -\frac{m}{2\pi} \int d\mathbf{r}' (d\mathbf{k}') \frac{e^{ikr - ik\mathbf{n}_{\mathbf{r}}\mathbf{r}'}}{r} e^{i\mathbf{k}'\mathbf{r}'} T_E(\mathbf{k}, \mathbf{k}'). \tag{20}$$

Интеграл по r' даёт трёхмерную дельта-функцию, которая фиксирует значение k' равным kn_r :

$$\chi_{\mathbf{k}}(\mathbf{r}) \approx -\frac{m}{2\pi} \frac{e^{ikr}}{r} T_E(\mathbf{k}, \mathbf{k}').$$
(21)

Отсюда получаем (18), в котором $\mathbf{k}' = k \mathbf{n}_r$ имеет смысл, введённый в начале семинара.

Борновское приближение

Ведущее приближение для T-матрицы есть $\hat{T}_E \approx \hat{V}$. Это приближение носит название E-ворновского. В нем амплитуда рассеяния выражается очень просто: как Фурье-образ потенциала, взятый на волновом векторе k-k' (который соответствует переданному от потенциала частице импульсу при акте рассеяния):

$$f(\boldsymbol{n}, \boldsymbol{n}') = -\frac{m}{2\pi} \tilde{V}_{\boldsymbol{k}-\boldsymbol{k}'}$$
(22)

Заметим что $|k-k'|=2k\sin{(\theta/2)}$, тогда для сферически симметричного потенциала

$$f(\theta) = -\frac{m}{2\pi} \tilde{V}\left(2k\sin\frac{\theta}{2}\right),\tag{23}$$

Применимость Пусть потенциал имеет характерную глубину $\sim V_0$ и характерный линейный размер $\sim a$. Обсудим вопрос применимости Борновского приближения. Необходимо, чтобы поправка была мала $|\chi_{\boldsymbol{k}}(\boldsymbol{r})| \ll 1$. Это условие заведомо выполнено вдали от рассеивателя, т.к. там $\chi(r) \propto 1/r$. Существенно, что это условие должно быть также выполнено и при $r \lesssim a$. В Борновском приближении поправку (19) можно переписать в координатном представлении в следующем виде:

$$\chi_{\mathbf{k}}(\mathbf{r}) = -\frac{m}{2\pi} e^{i\mathbf{k}\mathbf{r}} \int d\mathbf{r}' \frac{e^{i\mathbf{k}\mathbf{r}' + i\mathbf{k}\mathbf{r}'}}{r'} V(\mathbf{r} + \mathbf{r}')$$
(24)

Для оценки этого интеграла, принципиально важно различать случай «медленных» частиц $ka \lesssim 1$ и «быстрых» частиц $ka \gg 1$. Для медленных частиц, осцилляции в экспоненте слабые, и в рамках оценки мы можем заменить их на 1; интеграл оценивается как:

$$|\chi_{\mathbf{k}}(\mathbf{r})| \lesssim mV_0 a^2, \quad (ka \lesssim 1)$$
 (25)

В случае $ka\gg 1$ сильно осциллирующая экспонента $e^{ikr'+i\mathbf{k}\mathbf{r}'}=e^{ikr'(1+\cos\theta)}$ «обрежет» этот интеграл. Для его оценки вычислим объем области, ограничененной с одной стороны областью локализации потенциала, а с другой стороны, кривой, на которой фаза в экспоненте поменяется на величину порядка $1:kr'(1+\cos\theta)\sim kr'\sin^2\left(\theta/2\right)\sim 1$. Поправка максимальна

внутри ямы $r,r'\lesssim a$, и в этом случае можно видеть, что искомая область хорошо приближается частью конуса с углом раствора $\theta^*\sim 1/\sqrt{ka}$ (см. Рис. (2)), а вклад приходит с небольших углов $|\pi-\theta|\lesssim \theta^*$. Благодаря параметрической малости этой области, оценка интеграла для χ_{k} оказывается более строгой: оценивая объем конуса как $(\theta^*a)^2\cdot a\sim a^3/ka$ (в ka раз меньше, чем вся область потенциала), имеем

$$|\chi_{\mathbf{k}}(\mathbf{r})| \lesssim \frac{mV_0 a^2}{ka}, \quad (ka \gg 1)$$
 (26)

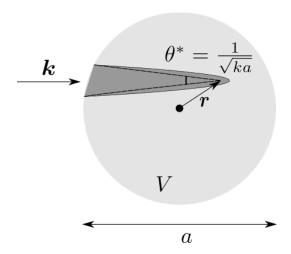


Рис. 2: Рассеяние быстрых частиц на локализованном потенциале; обозначена область, от которой приходит наибольший вклад в $\chi_{\pmb{k}}(\pmb{r})$

Из выражений (25) и (26) следует, что для выполнения условия $|\chi_{\bf k}(r)|\ll 1$ достаточно одного из двух условий: либо $mV_0a^2\ll 1$, что совпадает с условием на мелкую яму, либо $mV_0a^2/(ka)\ll 1$, что является условием на то, что частицы двигаются достаточно быстро. Последнее также интуитивно понятно — быстро движущиеся частицы проводят мало времени в поле потенциала и поэтому рассеиваются слабо.

$$mV_0a^2\ll 1$$
 (мелкая яма) либо (27) $rac{mV_0a^2}{ka}\ll 1$ (быстрые частицы)

Рассеяние быстрых и медленных частиц Обсудим ещё некие общие свойства рассеяния, которые выполняются и за рамками Борновского приближения, но на примере которого их можно проследить.

- Если частицы медленные (то есть $ka \ll 1$), то $V_{\mathbf{k}-\mathbf{k}'} \approx V_0$; зависимость от θ пропадает, и частицы рассеиваются изотропно (или, как говорят, рассеяние происходит в s-канале смысл этих слов станет понятен на следующем семинаре).
- Для случая быстрых частиц $ka\gg 1$, поскольку масштаб Фурье-образа потенциала \tilde{V} равен 1/a, то характерные углы рассеяния оказываются малыми $\theta\lesssim 1/ka$. Таким образом, быстрые частицы рассеиваются на малые углы (что интуитивно понятно из тех же квазиклассических соображений ведь быстрые частицы пролетают «быстро», и не успевают «почувствовать» потенциал).

Золотое правило Ферми Тот факт, что амплитуда рассеяния получилась пропорциональной Фурье-компоненте потенциала — это общее свойство Борновского приближения в пространстве любой размерности. Выше рассматривался трёхмерный случай, а здесь мы рассмотрим альтернативный вывод, который легко проделать в пространстве любой размерности. Воспользуемся золотым правилом Ферми (семинар про нестационарную теорию возмущений, переходы в непрерывном спектре). В качестве исходного состояния мы возьмём падающую волну $|i\rangle = |k\rangle$, а в качестве конечного — рассеянную волну $|f\rangle = |k'\rangle$. Матричный элемент возмущения как раз равен $V_{fi} \equiv V_{k-k'}$; и тогда золотое правило Ферми приводит к следующему выражению для количества переходов в единицу времени:

$$dN_{\text{pacc}} \equiv d\omega_{i\to f} = 2\pi |V_{k-k'}|^2 \delta\left(\frac{k^2}{2m} - \frac{k'^2}{2m}\right) \frac{d^d k'}{(2\pi)^d} = \frac{mk'^{d-2}}{(2\pi)^{d-1}} |V_{k-k'}|^2 \delta\left(k - k'\right) dk' d\Omega$$
 (28)

Наконец, интегрируя по модулю импульса конечных состояний и деля на плотность потока частиц в падающей волне $j_{\text{пал}} = k/m$, мы немедленно получаем дифференциальное сечение рассеяния в пространстве произвольной размерности:

$$\frac{d\sigma}{d\Omega} = \frac{m^2 k'^{d-3}}{(2\pi)^{d-1}} |V_{\mathbf{k}-\mathbf{k}'}|^2$$
(29)

В частности, при d=3, несложно видеть, $d\sigma/d\Omega=m^2|V_{{\bm k}-{\bm k'}}|^2/4\pi^2\equiv|f(\theta)|^2$, где $f(\theta)$ даётся формулой Борна (23). Недостатком этого способа является то, что он позволяет найти только сечение рассеяния, но не амплитуду, а в фазе амплитуды рассеяния (как мы видели в семинаре про непрерывный спектр) содержится содержательная информация.

Оптическая теорема и соотношение унитарности

Свойство унитарности квантовомеханической эволюции приводит к определенным соотношениям для амплитуды рассеяния, самое известное из которых носит название оптической теоремы. В трёхмерном случае она имеет вид:

$$\left| \operatorname{Im} f \left(\theta = 0 \right) = \frac{k}{4\pi} \sigma. \right| \tag{30}$$

Её можно приблизительно понять как соотношение между полным количеством рассеянных частиц и убылью количества частиц, не изменивших направления. Часто оптическая теорема представляет более простой способ вычислить полное сечение рассеяния — поскольку для него не требуется вычисления всей амплитуды рассеяния $f(\theta)$. Отметим, что в рамках формулы Борна, $f(\theta=0)=-\frac{m}{2\pi}\int d{\bf r}V({\bf r})$ — чисто вещественная величина. Мнимость появляется лишь во втором порядке теории возмущений, в то время как для вычисления правой части достаточно амплитуды рассеяния в первом порядке; тем самым, оптическая теорема для формулы Борна не даёт никаких преимуществ.

Для вывода соотношения унитарности рассмотрим объект $\hat{T}_E - \hat{T}_E^{\dagger}$ (по аналогии с $\mathrm{Im} f = \left(f - f^{\dagger}\right)/2i$). Подставляя выражение (17), получим:

$$\hat{T}_{E} - \hat{T}_{E}^{\dagger} = (1 - \hat{V}\hat{G}_{E}^{R(0)})^{-1}\hat{V} - \hat{V}(1 - \hat{G}_{E}^{A(0)}\hat{V})^{-1} = (1 - \hat{V}\hat{G}_{E}^{R(0)})^{-1} \left[\hat{V}(1 - \hat{G}_{E}^{A(0)}\hat{V}) - (1 - \hat{V}\hat{G}_{E}^{R(0)})\hat{V}\right](1 - \hat{G}_{E}^{A(0)}\hat{V})^{-1} = (1 - \hat{V}\hat{G}_{E}^{R(0)})^{-1}\hat{V}(\hat{G}^{R(0)} - \hat{G}^{A(0)})\hat{V}(1 - \hat{G}_{E}^{A(0)}\hat{V})^{-1} \equiv \hat{T}_{E}(\hat{G}_{E}^{R(0)} - \hat{G}_{E}^{A(0)})\hat{T}^{\dagger}$$
(31)

Применим к функции Грина формулу Сохоцкого:

$$\hat{G}^{R(A)} = \frac{1}{E - \hat{H} \pm i0} = \mathcal{P} \frac{1}{E - \hat{H}} \mp i\pi\delta \left(E - \hat{H}\right),\tag{32}$$

которое нужно понимать, как определённое в базисе собственных функций гамильтониана, например, $\delta\left(E-\hat{H}\right):=\sum_n \delta(E-E_n) |n\rangle \langle n|^7$. Тогда

$$\hat{T}_E - \hat{T}_E^{\dagger} = -2\pi i \hat{T}_E \delta(E - \hat{H}_0) \hat{T}_E^{\dagger}.$$
(33)

Переписывая это соотношение на языке амплитуды рассеяния с помощью (18), получим соотношение унитарности:

$$f(\boldsymbol{n}, \boldsymbol{n}') - f^*(\boldsymbol{n}', \boldsymbol{n}) = i \frac{k}{2\pi} \int d\boldsymbol{n}'' f(\boldsymbol{n}', \boldsymbol{n}'') f^*(\boldsymbol{n}, \boldsymbol{n}'').$$
(34)

Если взять частный случай n = n', то получим оптическую теорему (30).

Пример решения задачи

В качестве примера решения задачи, рассмотрим в рамках Борновского приближения рассеяние на трёхмерном потенциале $V(r) = V_0 e^{-r^2/a^2}$. Его Фурье-гармоника даётся:

$$V_{\mathbf{q}} = V_0 \int d\mathbf{r} e^{-r^2/a^2 + i\mathbf{q}\mathbf{r}} = V_0 \int d\mathbf{r} e^{-\frac{1}{a^2}(\mathbf{r} - \mathbf{q}a^2/2)^2 - q^2a^2/4} = \pi^{3/2} V_0 a^3 e^{-q^2a^2/4}.$$
 (35)

Заметим, что $q^2 = 4k^2 \sin^2 \frac{\theta}{2} = 2k^2 (1 - \cos \theta)$; поэтому амплитуда рассеяния равна:

$$f(\theta) = -\frac{\sqrt{\pi}}{2} V_0 m a^3 e^{-q^2 a^2/4} = -\frac{\sqrt{\pi}}{2} V_0 m a^3 e^{-k^2 a^2 (1 - \cos \theta)/2}.$$
 (36)

Наконец, для вычисления сечения рассеяния удобно заметить (это стандартный приём для трёхмерия!), что $\sin\theta d\theta = d(1-\cos\theta) = \frac{d(q^2)}{2k^2}$. Поэтому полное сечение рассеяния равно:

⁷Это общий правильный подход к определению функций от матриц и операторов. Определение через разложение в ряд плохо тем, что возникает множество проблем с областью сходимости.

$$\sigma = \frac{\pi^2}{4} \frac{m^2 a^6 V_0^2}{k^2} \int_0^{4k^2} d(q^2) e^{-q^2 a^2/4} = \frac{\pi^2 m^2 a^4 V_0^2}{k^2} (1 - e^{-k^2 a^2}). \tag{37}$$

Для медленных частиц $ka\ll 1$ это даёт $\sigma_{\rm slow}\approx \left(\frac{\pi V_0}{1/ma^2}\right)^2a^2\ll a^2$, а для быстрых — $\sigma_{\rm fast}\approx \left(\frac{\pi V_0}{1/ma^2}\right)^2\frac{1}{k^2}\ll \sigma_{\rm slow}$. В полном согласии с интуицией, быстрые частицы рассеиваются гораздо слабее (сечение меньше в $k^2a^2\gg 1$ раз); а сечение медленных частиц оказывается независящим от энергии. В обоих случаях рассеивание оказывается слабым (а именно, сечение рассеяния гораздо меньше геометрических размеров рассеивателя a^2).